English

The figure, given below, shows a trapezium ABCD. M and N are the mid-point of the non-parallel sides AD and BC respectively. Find: i. MN, if AB = 11 cm and DC = 8 cm. - Mathematics

Advertisements
Advertisements

Question

The figure, given below, shows a trapezium ABCD. M and N are the mid-point of the non-parallel sides AD and BC respectively. Find: 

  1. MN, if AB = 11 cm and DC = 8 cm.
  2. AB, if DC = 20 cm and MN = 27 cm.
  3. DC, if MN = 15 cm and AB = 23 cm.
Sum

Solution

Let we draw a diagonal AC as shown in the figure below,

(i) Given that AB = 11 cm, CD = 8 cm

From triangle ABC

ON = `[1]/[2]` AB

= `[1]/[2]` × 11

= 5.5 cm

From triangle ACD

OM = `[1]/[2]` CD

=`[1]/[2]` × 8

= 4 cm

Hence, MN = OM + ON

= (4 + 5.5)

= 9.5 cm

(ii) Given that CD = 20 cm, MN = 27 cm

From triangle ACD

OM = `[1]/[2]` CD

= `[1]/[2]` × 20

= 10 cm

Therefore, ON = 27 - 10 = 17 cm

From triangle ABC

AB = 2ON

= 2 × 17

= 34 cm

(iii) Given that AB = 23 cm, MN = 15 cm

From triangle ABC

ON =`[1]/[2]` AB

=`[1]/[2]` × 23

= 11.5 cm

OM = 15 - 11.5

OM = 3.5 cm

From triangle ACD

CD = 2OM

= 2 × 3.5

CD = 7 cm

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (A) [Page 150]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (A) | Q 5 | Page 150

RELATED QUESTIONS

In a triangle, P, Q and R are the mid-points of sides BC, CA and AB respectively. If AC =
21 cm, BC = 29 cm and AB = 30 cm, find the perimeter of the quadrilateral ARPQ.


Let Abc Be an Isosceles Triangle in Which Ab = Ac. If D, E, F Be the Mid-points of the Sides Bc, Ca and a B Respectively, Show that the Segment Ad and Ef Bisect Each Other at Right Angles.


Prove that the figure obtained by joining the mid-points of the adjacent sides of a rectangle is a rhombus.


L and M are the mid-point of sides AB and DC respectively of parallelogram ABCD. Prove that segments DL and BM trisect diagonal AC.


A parallelogram ABCD has P the mid-point of Dc and Q a point of Ac such that

CQ = `[1]/[4]`AC. PQ produced meets BC at R.

Prove that
(i)R is the midpoint of BC
(ii) PR = `[1]/[2]` DB


In parallelogram ABCD, E is the mid-point of AB and AP is parallel to EC which meets DC at point O and BC produced at P.
Prove that:
(i) BP = 2AD
(ii) O is the mid-point of AP.


ABCD is a parallelogram.E is the mid-point of CD and P is a point on AC such that PC = `(1)/(4)"AC"`. EP produced meets BC at F. Prove that: F is the mid-point of BC.


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: The line drawn through G and parallel to FE and bisects DA.


In the given figure, PS = 3RS. M is the midpoint of QR. If TR || MN || QP, then prove that:

RT = `(1)/(3)"PQ"`


Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a square is also a square.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×