English

Abcd is a Parallelogram.E is the Mid-point of Cd and P is a Point on Ac Such that Pc = 1 4 Ac . Ep Produced Meets Bc at F. Prove That: F is the Mid-point of Bc. - Mathematics

Advertisements
Advertisements

Question

ABCD is a parallelogram.E is the mid-point of CD and P is a point on AC such that PC = `(1)/(4)"AC"`. EP produced meets BC at F. Prove that: F is the mid-point of BC.

Sum

Solution


Join B and D. Suppose AC and BD cut at O. Then,

OC = `(1)/(2)"AC"`

Now,
PC = `(1)/(4)"AC"`

⇒ PC = `(1)/(2)"OC"`

In ΔDCO, E and P are the mid-points of DC and OC respectively.
∴ EP || DO
Also, in ΔCOB, P is the midpoint of OC and PF || DO || BD
Therefore, F is the mid-point of BC, F being EP produced.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mid-point and Intercept Theorems - Exercise 15.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 15 Mid-point and Intercept Theorems
Exercise 15.1 | Q 21.1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×