English

Abcd is a Parallelogram, E and F Are the Mid-points of Ab and Cd Respectively. Gh is Any Line Intersecting Ad, Ef and Bc at G, P and H Respectively. Prove that Gp = Ph - Mathematics

Advertisements
Advertisements

Question

ABCD is a parallelogram, E and F are the mid-points of AB and CD respectively. GH is any line intersecting AD, EF and BC at G, P and H respectively. Prove that GP = PH

Solution

Since E and F are midpoints of AB and CD respectively

∴ AE = BE =`1/2` AB

And CF = DF =`1/2` CD

But, AB = CD

∴ `1/2` AB = `1/2` CD

⇒ BE = CF

Also, BE || CF                [∵AB || CD]

∴ BEFC is a parallelogram

⇒ BC || EF and BF = PH            ....(i )

Now,  BC || EF

⇒ AD || EF          [ ∵ BC || AD as  ABCD is a parallel]      

⇒ AEFD is parallelogram

⇒ AE = GP

But is the midpoint of AB

∴ AE = BE

⇒ GP = PH

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Quadrilaterals - Exercise 13.4 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 13 Quadrilaterals
Exercise 13.4 | Q 19 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In a triangle, P, Q and R are the mid-points of sides BC, CA and AB respectively. If AC =
21 cm, BC = 29 cm and AB = 30 cm, find the perimeter of the quadrilateral ARPQ.


In a ΔABC, BM and CN are perpendiculars from B and C respectively on any line passing
through A. If L is the mid-point of BC, prove that ML = NL.


In triangle ABC, M is mid-point of AB and a straight line through M and parallel to BC cuts AC in N. Find the lengths of AN and MN if Bc = 7 cm and Ac = 5 cm.


ABCD is a quadrilateral in which AD = BC. E, F, G and H are the mid-points of AB, BD, CD and Ac respectively. Prove that EFGH is a rhombus.


D, E, and F are the mid-points of the sides AB, BC, and CA respectively of ΔABC. AE meets DF at O. P and Q are the mid-points of OB and OC respectively. Prove that DPQF is a parallelogram.


The side AC of a triangle ABC is produced to point E so that CE = AC. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meet AC at point P and EF at point R respectively.

Prove that:

  1. 3DF = EF
  2. 4CR = AB

In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find FE, if BC = 14 cm


Side AC of a ABC is produced to point E so that CE = `(1)/(2)"AC"`. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meets AC at point P and EF at point R respectively. Prove that: 3DF = EF


In ΔABC, D, E and F are the midpoints of AB, BC and AC.
If AE and DF intersect at G, and M and N are the midpoints of GB and GC respectively, prove that DMNF is a parallelogram.


In ΔABC, D and E are the midpoints of the sides AB and BC respectively. F is any point on the side AC. Also, EF is parallel to AB. Prove that BFED is a parallelogram.

Remark: Figure is incorrect in Question


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×