हिंदी

Abcd is a Parallelogram, E and F Are the Mid-points of Ab and Cd Respectively. Gh is Any Line Intersecting Ad, Ef and Bc at G, P and H Respectively. Prove that Gp = Ph - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a parallelogram, E and F are the mid-points of AB and CD respectively. GH is any line intersecting AD, EF and BC at G, P and H respectively. Prove that GP = PH

उत्तर

Since E and F are midpoints of AB and CD respectively

∴ AE = BE =`1/2` AB

And CF = DF =`1/2` CD

But, AB = CD

∴ `1/2` AB = `1/2` CD

⇒ BE = CF

Also, BE || CF                [∵AB || CD]

∴ BEFC is a parallelogram

⇒ BC || EF and BF = PH            ....(i )

Now,  BC || EF

⇒ AD || EF          [ ∵ BC || AD as  ABCD is a parallel]      

⇒ AEFD is parallelogram

⇒ AE = GP

But is the midpoint of AB

∴ AE = BE

⇒ GP = PH

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Quadrilaterals - Exercise 13.4 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 13 Quadrilaterals
Exercise 13.4 | Q 19 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×