हिंदी

In the Below Fig, Abcd and Pqrc Are Rectangles and Q is the Mid-point of Prove that I) Dp = Pc (Ii) Pr = `1/2` Ac - Mathematics

Advertisements
Advertisements

प्रश्न

In the below Fig, ABCD and PQRC are rectangles and Q is the mid-point of Prove thaT

i) DP = PC (ii) PR = `1/2` AC

उत्तर

(i)In DADC, Q is the midpoint of AC such that

PQ || AD

∴ P is the midpoint of DC

⇒ DP = DC        [Using converse of midpoint theorem]

(ii)Similarly, R is the midpoint of BC

∴ PR = `1/2` BD   [Diagonal of rectangle are equal \BD = AC ]

PR = `1/2` AC       

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Quadrilaterals - Exercise 13.4 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 13 Quadrilaterals
Exercise 13.4 | Q 18 | पृष्ठ ६४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.


In Fig. below, M, N and P are the mid-points of AB, AC and BC respectively. If MN = 3 cm, NP = 3.5 cm and MP = 2.5 cm, calculate BC, AB and AC.


ABCD is a kite having AB = AD and BC = CD. Prove that the figure formed by joining the
mid-points of the sides, in order, is a rectangle.


The following figure shows a trapezium ABCD in which AB // DC. P is the mid-point of AD and PR // AB. Prove that:

PR = `[1]/[2]` ( AB + CD)


L and M are the mid-point of sides AB and DC respectively of parallelogram ABCD. Prove that segments DL and BM trisect diagonal AC.


The side AC of a triangle ABC is produced to point E so that CE = AC. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meet AC at point P and EF at point R respectively.

Prove that:

  1. 3DF = EF
  2. 4CR = AB

In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find FE, if BC = 14 cm


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: DC, if AB = 20 cm and PQ = 14 cm


ΔABC is an isosceles triangle with AB = AC. D, E and F are the mid-points of BC, AB and AC respectively. Prove that the line segment AD is perpendicular to EF and is bisected by it.


The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rhombus, if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×