English
Maharashtra State BoardSSC (English Medium) 9th Standard

In the given figure, □PQRS and □MNRL are rectangles. If point M is the midpoint of side PR then prove that, SL = LR LN = 12SQ - Geometry

Advertisements
Advertisements

Question

In the given figure, `square`PQRS and `square`MNRL are rectangles. If point M is the midpoint of side PR then prove that,

  1. SL = LR
  2. LN = `1/2`SQ

Sum

Solution

(i) `square`LMNR and `square`MNRL are rectangles.

∴ Side LM || Side RN        ...(Opposite sides of rectangle)

That is, Side LM || Side RQ        ...(R-N-Q) ...(i)

Side RQ || Side SP       ...(Opposite sides of the rectangle) ...(ii)

From (i) and (ii),

Side LM || Side SP       ...(iii)

In ΔRSP,

Point M is the midpoint of Seg PR.

Line LM || Line SP        ...[From (iii)]

∴ Point L is the midpoint of Seg SR.        ...(Converse of Midpoint Theorem) ...(iv)

∴ SL = LR

(ii) The diagonals of a rectangle are congruent.

∴ SQ = PR    ...(v)

LN = MR      ...(vi)

Now, MR = `1/2` PR       ...(Point M is the midpoint of line PR.) ...(vii)

∴ LN = `1/2` PR        ...[From (vi) and (vii)]   ...(viii)

∴ LN = `1/2` SQ       ...[From (vii) and (viii)]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Quadrilaterals - Practice Set 5.5 [Page 73]

APPEARS IN

Balbharati Geometry (Mathematics 2) [English] 9 Standard Maharashtra State Board
Chapter 5 Quadrilaterals
Practice Set 5.5 | Q 2 | Page 73

RELATED QUESTIONS

In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see the given figure). Show that the line segments AF and EC trisect the diagonal BD.


In below fig. ABCD is a parallelogram and E is the mid-point of side B If DE and AB when produced meet at F, prove that AF = 2AB.


In below Fig, ABCD is a parallelogram in which P is the mid-point of DC and Q is a point on AC such that CQ = `1/4` AC. If PQ produced meets BC at R, prove that R is a mid-point of BC.


In the adjacent figure, `square`ABCD is a trapezium AB || DC. Points M and N are midpoints of diagonal AC and DB respectively then prove that MN || AB.


Prove that the figure obtained by joining the mid-points of the adjacent sides of a rectangle is a rhombus.


In triangle ABC, AD is the median and DE, drawn parallel to side BA, meets AC at point E.
Show that BE is also a median.


In a parallelogram ABCD, M is the mid-point AC. X and Y are the points on AB and DC respectively such that AX = CY. Prove that:
(i) Triangle AXM is congruent to triangle CYM, and

(ii) XMY is a straight line.


In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: ΔHEB ≅ ΔHFC


In ΔABC, D and E are the midpoints of the sides AB and BC respectively. F is any point on the side AC. Also, EF is parallel to AB. Prove that BFED is a parallelogram.

Remark: Figure is incorrect in Question


P and Q are the mid-points of the opposite sides AB and CD of a parallelogram ABCD. AQ intersects DP at S and BQ intersects CP at R. Show that PRQS is a parallelogram.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×