English

P and Q are the mid-points of the opposite sides AB and CD of a parallelogram ABCD. AQ intersects DP at S and BQ intersects CP at R. Show that PRQS is a parallelogram. - Mathematics

Advertisements
Advertisements

Question

P and Q are the mid-points of the opposite sides AB and CD of a parallelogram ABCD. AQ intersects DP at S and BQ intersects CP at R. Show that PRQS is a parallelogram.

Sum

Solution

Given: In a parallelogram ABCD, P and Q are the mid-points of AS and CD, respectively.

To show: PRQS is a parallelogram.

Proof: Since, ABCD is a parallelogram.

AB || CD

⇒ AP || QC

Also, AB = DC


`1/2`AB = `1/2`DC   ...[Dividing both sides by 2]

⇒ AP = QC  ...[Since, P and Q are the mid-points of AB and DC]

Now, AP || QC and AP = QC

Thus, APCQ is a parallelogram.

∴ AQ || PC or SQ || PR  ...(i)

Again, AB || DC or BP || DQ

Also, AB = DC

⇒ `1/2`AB = `1/2`DC   ...[Dividing both sides by 2]

⇒ BP = QD  ...[Since, P and Q are the mid-points of AB and DC]

Now, BP || QD and BP = QD

So, BPDQ is a parallelogram.

∴ PD || BQ or PS || QR   ...(ii)

From equations (i) and (ii),

SQ || RP and PS || QR 

So, PRQS is a parallelogram.

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Quadrilaterals - Exercise 8.4 [Page 82]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 8 Quadrilaterals
Exercise 8.4 | Q 7. | Page 82

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In a ΔABC, BM and CN are perpendiculars from B and C respectively on any line passing
through A. If L is the mid-point of BC, prove that ML = NL.


In ∆ABC, E is the mid-point of the median AD, and BE produced meets side AC at point Q.

Show that BE: EQ = 3: 1.


In triangle ABC, AD is the median and DE, drawn parallel to side BA, meets AC at point E.
Show that BE is also a median.


The side AC of a triangle ABC is produced to point E so that CE = AC. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meet AC at point P and EF at point R respectively.

Prove that:

  1. 3DF = EF
  2. 4CR = AB

In triangle ABC, the medians BP and CQ are produced up to points M and N respectively such that BP = PM and CQ = QN. Prove that:

  1. M, A, and N are collinear.
  2. A is the mid-point of MN.

If L and M are the mid-points of AB, and DC respectively of parallelogram ABCD. Prove that segment DL and BM trisect diagonal AC.


AD is a median of side BC of ABC. E is the midpoint of AD. BE is joined and produced to meet AC at F. Prove that AF: AC = 1 : 3.


In ΔABC, D, E and F are the midpoints of AB, BC and AC.
If AE and DF intersect at G, and M and N are the midpoints of GB and GC respectively, prove that DMNF is a parallelogram.


In AABC, D and E are two points on the side AB such that AD = DE = EB. Through D and E, lines are drawn parallel to BC which meet the side AC at points F and G respectively. Through F and G, lines are drawn parallel to AB which meet the side BC at points M and N respectively. Prove that BM = MN = NC.


The figure obtained by joining the mid-points of the sides of a rhombus, taken in order, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×