English

The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rectangle, if ______. - Mathematics

Advertisements
Advertisements

Question

The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rectangle, if ______.

Options

  • PQRS is a rectangle

  • PQRS is a parallelogram

  • diagonals of PQRS are perpendicular

  • diagonals of PQRS are equal

MCQ
Fill in the Blanks

Solution

The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rectangle, if diagonals of PQRS are perpendicular.

Explanation:


Since, diagonals of rectangle are equal

∴ AC = BD

⇒ PQ = QR

∴ PQRS is a rhombus

Diagonals of a rhombus are perpendicular.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Quadrilaterals - Exercise 8.1 [Page 73]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 8 Quadrilaterals
Exercise 8.1 | Q 4. | Page 73

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

ABCD is a parallelogram, E and F are the mid-points of AB and CD respectively. GH is any line intersecting AD, EF and BC at G, P and H respectively. Prove that GP = PH


Show that the line segments joining the mid-points of the opposite sides of a quadrilateral
bisect each other.


In the given figure, points X, Y, Z are the midpoints of side AB, side BC and side AC of ΔABC respectively. AB = 5 cm, AC = 9 cm and BC = 11 cm. Find the length of XY, YZ, XZ.


In the given figure, seg PD is a median of ΔPQR. Point T is the mid point of seg PD. Produced QT intersects PR at M. Show that `"PM"/"PR" = 1/3`.

[Hint: DN || QM]


In ∆ABC, E is the mid-point of the median AD, and BE produced meets side AC at point Q.

Show that BE: EQ = 3: 1.


Use the following figure to find:
(i) BC, if AB = 7.2 cm.
(ii) GE, if FE = 4 cm.
(iii) AE, if BD = 4.1 cm
(iv) DF, if CG = 11 cm.


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: QAP is a straight line.


In ΔABC, P is the mid-point of BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R. Prove that: BC = 4QR


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: The line drawn through G and parallel to FE and bisects DA.


In ΔABC, D, E and F are the midpoints of AB, BC and AC.
If AE and DF intersect at G, and M and N are the midpoints of GB and GC respectively, prove that DMNF is a parallelogram.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×