English

Show that the Line Segments Joining the Mid-points of the Opposite Sides of a Quadrilateral Bisect Each Other. - Mathematics

Advertisements
Advertisements

Question

Show that the line segments joining the mid-points of the opposite sides of a quadrilateral
bisect each other.

Solution

Let ABCD is a quadrilateral in which P,Q, R and S are midpoints of sides
AB, BC,CD and DA respectively join PQ,QR,RS, SP and BD
In ABD, S and P are the midpoints of AD and AB respectively.
So, by using midpoint theorem we can say that

SP || BD and SP = `1/2` BD          ......(1)

Similarly in   ΔBCD

QR || BD and QR = `1/2` BD          .....(2)

From equation (1) and (2) we have

SP || QR and SP = QR

As in quadrilateral SPQR one pair of opposite side are equal and parallel to each other. So, SPQR is parallelogram

Since, diagonals of a parallelogram bisect each other.

Hence PR and QS bisect each other.

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Quadrilaterals - Exercise 13.4 [Page 64]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 13 Quadrilaterals
Exercise 13.4 | Q 12 | Page 64

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.


In a ΔABC, BM and CN are perpendiculars from B and C respectively on any line passing
through A. If L is the mid-point of BC, prove that ML = NL.


ABCD is a kite having AB = AD and BC = CD. Prove that the figure formed by joining the
mid-points of the sides, in order, is a rectangle.


In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find FE, if BC = 14 cm


In a parallelogram ABCD, M is the mid-point AC. X and Y are the points on AB and DC respectively such that AX = CY. Prove that:
(i) Triangle AXM is congruent to triangle CYM, and

(ii) XMY is a straight line.


Side AC of a ABC is produced to point E so that CE = `(1)/(2)"AC"`. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meets AC at point P and EF at point R respectively. Prove that: 4CR = AB.


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: The line drawn through G and parallel to FE and bisects DA.


In ΔABC, D, E and F are the midpoints of AB, BC and AC.
Show that AE and DF bisect each other.


D and E are the mid-points of the sides AB and AC of ∆ABC and O is any point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is ______.


E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. Prove that EF || AB and EF = `1/2` (AB + CD).

[Hint: Join BE and produce it to meet CD produced at G.]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×