Advertisements
Advertisements
Question
ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.
Solution
In ΔABC, P and Q are the mid-points of sides AB and BC respectively.
∴ PQ || AC and PQ = `1/2 AC` ...(Using mid-point theorem) ...(1)
In ΔADC,
R and S are the mid-points of CD and AD respectively.
∴ RS || AC and RS = `1/2 AC` ...(Using mid-point theorem) ...(2)
From equations (1) and (2), we obtain
PQ || RS and PQ = RS
Since in quadrilateral PQRS, one pair of opposite sides is equal and parallel to each other, it is a parallelogram.
Let the diagonals of rhombus ABCD intersect each other at point O.
In quadrilateral OMQN,
MQ || ON ...(∵ PQ || AC)
QN || OM ...(∵ QR || BD)
Therefore, OMQN is a parallelogram.
⇒ ∠MQN = ∠NOM
⇒ ∠PQR = ∠NOM
However, ∠NOM = 90° ...(Diagonals of a rhombus are perpendicular to each other)
∴ ∠PQR = 90°
Clearly, PQRS is a parallelogram having one of its interior angles as 90°.
Hence, PQRS is a rectangle.
APPEARS IN
RELATED QUESTIONS
ABCD is a square E, F, G and H are points on AB, BC, CD and DA respectively, such that AE = BF = CG = DH. Prove that EFGH is a square.
In the given figure, ΔABC is an equilateral traingle. Points F, D and E are midpoints of side AB, side BC, side AC respectively. Show that ΔFED is an equilateral traingle.
In ∆ABC, E is the mid-point of the median AD, and BE produced meets side AC at point Q.
Show that BE: EQ = 3: 1.
In trapezium ABCD, sides AB and DC are parallel to each other. E is mid-point of AD and F is mid-point of BC.
Prove that: AB + DC = 2EF.
In the given figure, AD and CE are medians and DF // CE.
Prove that: FB = `1/4` AB.
Show that the quadrilateral formed by joining the mid-points of the adjacent sides of a square is also a square.
Side AC of a ABC is produced to point E so that CE = `(1)/(2)"AC"`. D is the mid-point of BC and ED produced meets AB at F. Lines through D and C are drawn parallel to AB which meets AC at point P and EF at point R respectively. Prove that: 3DF = EF
In ΔABC, the medians BE and CD are produced to the points P and Q respectively such that BE = EP and CD = DQ. Prove that: A is the mid-point of PQ.
The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only if, ______.
P and Q are the mid-points of the opposite sides AB and CD of a parallelogram ABCD. AQ intersects DP at S and BQ intersects CP at R. Show that PRQS is a parallelogram.