मराठी

In Below Fig, Abcd is a Parallelogram in Which P is the Mid-point of Dc and Q is a Point on Ac Such that Cq = `1/4` Ac. If Pq Produced Meets Bc at R, Prove that R is a Mid-point of Bc. - Mathematics

Advertisements
Advertisements

प्रश्न

In below Fig, ABCD is a parallelogram in which P is the mid-point of DC and Q is a point on AC such that CQ = `1/4` AC. If PQ produced meets BC at R, prove that R is a mid-point of BC.

थोडक्यात उत्तर

उत्तर

Join B and D, suppose AC and BD out at O.

Then OC = `1/2` AC

Now,

CQ = `1/4` AC

⇒ CQ = `1/2`   `[1/2 AC ]`

= `1/2` × OC

In Δ DCO, P and Q are midpoints of DC and OC respectively

∴ PQ || PO

Also in Δ COB, Q is the midpoint of OC and QR || OB

∴ R is the midpoint of BC

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Quadrilaterals - Exercise 13.4 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 13 Quadrilaterals
Exercise 13.4 | Q 17 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

ABC is a triangle and through A, B, C lines are drawn parallel to BC, CA and AB respectively
intersecting at P, Q and R. Prove that the perimeter of ΔPQR is double the perimeter of
ΔABC


Fill in the blank to make the following statement correct

The triangle formed by joining the mid-points of the sides of an isosceles triangle is         


In trapezium ABCD, sides AB and DC are parallel to each other. E is mid-point of AD and F is mid-point of BC.
Prove that: AB + DC = 2EF.


In triangle ABC ; D and E are mid-points of the sides AB and AC respectively. Through E, a straight line is drawn parallel to AB to meet BC at F.
Prove that BDEF is a parallelogram. If AB = 16 cm, AC = 12 cm and BC = 18 cm,
find the perimeter of the parallelogram BDEF.


D, E and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC. Prove that ΔDEF is also isosceles.


In ΔABC, D, E and F are the midpoints of AB, BC and AC.
Show that AE and DF bisect each other.


In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: ΔHEB ≅ ΔHFC


In the given figure, PS = 3RS. M is the midpoint of QR. If TR || MN || QP, then prove that:

ST = `(1)/(3)"LS"`


P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD such that AC ⊥ BD. Prove that PQRS is a rectangle.


D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. Prove that by joining these mid-points D, E and F, the triangles ABC is divided into four congruent triangles.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×