मराठी

ABC is a triang D is a point on AB such that AD = 14 AB and E is a point on AC such that AE = 14 AC. Prove that DE = 14 BC. - Mathematics

Advertisements
Advertisements

प्रश्न

ABC is a triang D is a point on AB such that AD = `1/4` AB and E is a point on AC such that AE = `1/4` AC. Prove that DE = `1/4` BC.

बेरीज
सिद्धांत

उत्तर

Let P and Q be the midpoints of AB and AC respectively.

Then PQ || BC such that

PQ = `1/2` BC         ......(i)

In ΔAPQ, D and E are the midpoint of AP and AQ are respectively

∴ DE || PQ and DE = `1/2` PQ       ....(ii)

From (1) and (2)   DE = `1/2 PQ = 1/2 PQ =  1/2  (1/2 BC) `    

DE = `1 /4`BC

Hence, proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Quadrilaterals - Exercise 13.4 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 13 Quadrilaterals
Exercise 13.4 | Q 16 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In the given figure, M is mid-point of AB and DE, whereas N is mid-point of BC and DF.
Show that: EF = AC.


In triangle ABC, AD is the median and DE, drawn parallel to side BA, meets AC at point E.
Show that BE is also a median.


In triangle ABC ; D and E are mid-points of the sides AB and AC respectively. Through E, a straight line is drawn parallel to AB to meet BC at F.
Prove that BDEF is a parallelogram. If AB = 16 cm, AC = 12 cm and BC = 18 cm,
find the perimeter of the parallelogram BDEF.


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: A is the mid-point of PQ.


Prove that the figure obtained by joining the mid-points of the adjacent sides of a rectangle is a rhombus.


Prove that the straight lines joining the mid-points of the opposite sides of a quadrilateral bisect each other.


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: The line drawn through G and parallel to FE and bisects DA.


The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rectangle, if ______.


D and E are the mid-points of the sides AB and AC of ∆ABC and O is any point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is ______.


P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. Prove that PQRS is a rhombus.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×