English

ABC is a triang D is a point on AB such that AD = 14 AB and E is a point on AC such that AE = 14 AC. Prove that DE = 14 BC. - Mathematics

Advertisements
Advertisements

Question

ABC is a triang D is a point on AB such that AD = `1/4` AB and E is a point on AC such that AE = `1/4` AC. Prove that DE = `1/4` BC.

Sum
Theorem

Solution

Let P and Q be the midpoints of AB and AC respectively.

Then PQ || BC such that

PQ = `1/2` BC         ......(i)

In ΔAPQ, D and E are the midpoint of AP and AQ are respectively

∴ DE || PQ and DE = `1/2` PQ       ....(ii)

From (1) and (2)   DE = `1/2 PQ = 1/2 PQ =  1/2  (1/2 BC) `    

DE = `1 /4`BC

Hence, proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Quadrilaterals - Exercise 13.4 [Page 64]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 13 Quadrilaterals
Exercise 13.4 | Q 16 | Page 64

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In a triangle ∠ABC, ∠A = 50°, ∠B = 60° and ∠C = 70°. Find the measures of the angles of

the triangle formed by joining the mid-points of the sides of this triangle. 


In a triangle, P, Q and R are the mid-points of sides BC, CA and AB respectively. If AC =
21 cm, BC = 29 cm and AB = 30 cm, find the perimeter of the quadrilateral ARPQ.


ABCD is a kite having AB = AD and BC = CD. Prove that the figure formed by joining the
mid-points of the sides, in order, is a rectangle.


BM and CN are perpendiculars to a line passing through the vertex A of a triangle ABC. If
L is the mid-point of BC, prove that LM = LN.


In the Figure, `square`ABCD is a trapezium. AB || DC. Points P and Q are midpoints of seg AD and seg BC respectively. Then prove that, PQ || AB and PQ = `1/2 ("AB" + "DC")`.


D and F are midpoints of sides AB and AC of a triangle ABC. A line through F and parallel to AB meets BC at point E.

  1. Prove that BDFE is a parallelogram
  2.  Find AB, if EF = 4.8 cm.

Use the following figure to find:
(i) BC, if AB = 7.2 cm.
(ii) GE, if FE = 4 cm.
(iii) AE, if BD = 4.1 cm
(iv) DF, if CG = 11 cm.


In triangle ABC, angle B is obtuse. D and E are mid-points of sides AB and BC respectively and F is a point on side AC such that EF is parallel to AB. Show that BEFD is a parallelogram.


In the given figure, AD and CE are medians and DF // CE.
Prove that: FB = `1/4` AB.


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: AB, if DC = 8 cm and PQ = 9.5 cm


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×