मराठी

Prove that the Straight Lines Joining the Mid-points of the Opposite Sides of a Quadrilateral Bisect Each Other. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the straight lines joining the mid-points of the opposite sides of a quadrilateral bisect each other.

बेरीज

उत्तर


Join AC.

P and Q are mid-points of AB and BC respectively.

∴ PQ || AC, PQ = `(1)/(2)"AC"`.........(i)

S and R are mid-points of AD and DC respectively.

∴ SR || AC, SR = `(1)/(2)"AC"`.........(ii)
From (i) and (ii)
PQ = SR
Therefore, PQRS is a parallelogram.
Since, diagonals of a parallelogram bisect each other
Therefore, PQ and QS bisect each other.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mid-point and Intercept Theorems - Exercise 15.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 15 Mid-point and Intercept Theorems
Exercise 15.1 | Q 8

संबंधित प्रश्‍न

ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.


Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.


In a ΔABC, BM and CN are perpendiculars from B and C respectively on any line passing
through A. If L is the mid-point of BC, prove that ML = NL.


In the given figure, points X, Y, Z are the midpoints of side AB, side BC and side AC of ΔABC respectively. AB = 5 cm, AC = 9 cm and BC = 11 cm. Find the length of XY, YZ, XZ.


ABCD is a quadrilateral in which AD = BC. E, F, G and H are the mid-points of AB, BD, CD and Ac respectively. Prove that EFGH is a rhombus.


D, E, and F are the mid-points of the sides AB, BC, and CA respectively of ΔABC. AE meets DF at O. P and Q are the mid-points of OB and OC respectively. Prove that DPQF is a parallelogram.


In triangle ABC ; D and E are mid-points of the sides AB and AC respectively. Through E, a straight line is drawn parallel to AB to meet BC at F.
Prove that BDEF is a parallelogram. If AB = 16 cm, AC = 12 cm and BC = 18 cm,
find the perimeter of the parallelogram BDEF.


In parallelogram PQRS, L is mid-point of side SR and SN is drawn parallel to LQ which meets RQ produced at N and cuts side PQ at M. Prove that M is the mid-point of PQ.


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: AB, if DC = 8 cm and PQ = 9.5 cm


In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: ΔGEA ≅ ΔGFD


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×