मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता ९ वी

In the given figure, ΔABC is an equilateral traingle. Points F, D and E are midpoints of side AB, side BC, side AC respectively. Show that ΔFED is an equilateral traingle. - Geometry

Advertisements
Advertisements

प्रश्न

In the given figure, ΔABC is an equilateral traingle. Points F, D and E are midpoints of side AB, side BC, side AC respectively. Show that ΔFED is an equilateral traingle.

बेरीज

उत्तर

Given: ∆ABC is an equilateral triangle and D, E and F are mid-points of BC, AC and AB respectively.

To prove: ∆FED is an equilateral triangle.

Proof:

In ΔABC,

Points F and E are the midpoints of sides AB and AC respectively.      ...(Given)

∴ FE = `1/2` BC       ...(From midpoint theorem) ...(i)

In ΔABC,

Points D and E are the midpoints of sides BC and AC respectively.     ...(Given)

∴ DE = `1/2` AB      ...(From midpoint theorem)   ...(ii)

In ΔABC,

Points D and F are the midpoints of sides BC and AB respectively.     ...(Given)

∴ DF = `1/2` AC       ...(From midpoint theorem) ...(iii)

Now, ΔABC is an equilateral triangle.

∴ BC = AB = AC      ...(Sides of equilateral triangle)

∴ `1/2` BC = `1/2` AB = `1/2` AC     ...(Multiplying both sides by `1 /2`)

∴ FE = DE = DF       ...[From (i), (ii) and (iii)]

∴ ΔFED is an equilateral triangle.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Quadrilaterals - Practice Set 5.5 [पृष्ठ ७३]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 9 Standard Maharashtra State Board
पाठ 5 Quadrilaterals
Practice Set 5.5 | Q 3 | पृष्ठ ७३

संबंधित प्रश्‍न

In Fig. below, BE ⊥ AC. AD is any line from A to BC intersecting BE in H. P, Q and R are
respectively the mid-points of AH, AB and BC. Prove that ∠PQR = 90°.


ABCD is a parallelogram, E and F are the mid-points of AB and CD respectively. GH is any line intersecting AD, EF and BC at G, P and H respectively. Prove that GP = PH


In triangle ABC, angle B is obtuse. D and E are mid-points of sides AB and BC respectively and F is a point on side AC such that EF is parallel to AB. Show that BEFD is a parallelogram.


In triangle ABC, D and E are points on side AB such that AD = DE = EB. Through D and E, lines are drawn parallel to BC which meet side AC at points F and G respectively. Through F and G, lines are drawn parallel to AB which meets side BC at points M and N respectively. Prove that: BM = MN = NC.


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: QAP is a straight line.


In ΔABC, P is the mid-point of BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R. Prove that: AP = 2AR


In ΔABC, D, E and F are the midpoints of AB, BC and AC.
Show that AE and DF bisect each other.


The diagonals AC and BD of a quadrilateral ABCD intersect at right angles. Prove that the quadrilateral formed by joining the midpoints of quadrilateral ABCD is a rectangle.


In the given figure, PS = 3RS. M is the midpoint of QR. If TR || MN || QP, then prove that:

RT = `(1)/(3)"PQ"`


The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rhombus, if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×