Advertisements
Advertisements
प्रश्न
Points A(4, 3), B(6, 4), C(5, –6) and D(–3, 5) are the vertices of a parallelogram.
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
Now, distance between A(4, 3) and B(6, 4),
AB = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`
AB = `sqrt((6 - 4)^2 + (4 - 3)^2`
= `sqrt(2^2 + 1^2)`
= `sqrt(5)`
Distance between B(6, 4) and C(5, – 6),
BC = `sqrt((5 - 6)^2 + (-6 - 4)^2`
= `sqrt((-1)^2 + (-10)^2`
= `sqrt(1 + 100)`
= `sqrt(101)`
Distance between C(5, – 6) and D(– 3, 5),
CD = `sqrt((-3 - 5)^2 + (5 + 6)^2`
= `sqrt((-8)^2 + (11)^2`
= `sqrt(64 + 121)`
= `sqrt(185)`
Distance between D(– 3, 5) and A(4, 3),
DA = `sqrt((4 + 3)^2 + (3 - 5)^2`
= `sqrt(7^2 + (-2)^2`
= `sqrt(49 + 4)`
= `sqrt(53)`
In parallelogram, opposite sides are equal.
Here, we see that all sides AB, BC, CD and DA are different.
Hence, given vertices are not the vertices of a parallelogram.
APPEARS IN
संबंधित प्रश्न
Find the distance between the following pair of point.
T(–3, 6), R(9, –10)
Determine whether the point is collinear.
P(–2, 3), Q(1, 2), R(4, 1)
Find the distance between the following pairs of point in the coordinate plane :
(13 , 7) and (4 , -5)
Find the value of a if the distance between the points (5 , a) and (1 , 5) is 5 units .
Find the coordinates of the points on the y-axis, which are at a distance of 10 units from the point (-8, 4).
By using the distance formula prove that each of the following sets of points are the vertices of a right angled triangle.
(i) (6, 2), (3, -1) and (- 2, 4)
(ii) (-2, 2), (8, -2) and (-4, -3).
If the distance between the points (4, P) and (1, 0) is 5, then the value of p is ______.
Find the points on the x-axis which are at a distance of `2sqrt(5)` from the point (7, – 4). How many such points are there?
What is the distance of the point (– 5, 4) from the origin?
In a GPS, The lines that run east-west are known as lines of latitude, and the lines running north-south are known as lines of longitude. The latitude and the longitude of a place are its coordinates and the distance formula is used to find the distance between two places. The distance between two parallel lines is approximately 150 km. A family from Uttar Pradesh planned a round trip from Lucknow (L) to Puri (P) via Bhuj (B) and Nashik (N) as shown in the given figure below. |
Based on the above information answer the following questions using the coordinate geometry.
- Find the distance between Lucknow (L) to Bhuj (B).
- If Kota (K), internally divide the line segment joining Lucknow (L) to Bhuj (B) into 3 : 2 then find the coordinate of Kota (K).
- Name the type of triangle formed by the places Lucknow (L), Nashik (N) and Puri (P)
[OR]
Find a place (point) on the longitude (y-axis) which is equidistant from the points Lucknow (L) and Puri (P).