Advertisements
Advertisements
प्रश्न
Determine whether the point is collinear.
P(–2, 3), Q(1, 2), R(4, 1)
उत्तर
By distance formula,
\[\mathrm{d}(\mathrm{P},\mathrm{Q})=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\]
= \[\sqrt{\left[1- (-2)\right]^{2}+\left(2 - 3\right)^{2}}\]
= \[\sqrt{(1+ 2)^{2}+(2 - 3)^2}\]
= \[\sqrt{(3)^{2}+(- 1)^2}\]
= \[\sqrt{9 + 1}\]
∴ \[\mathrm{d}(\mathrm{P},\mathrm{Q}) = \sqrt{10}\] ...(i)
\[\mathrm{d}(\mathrm{Q},\mathrm{R})=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\]
= \[\sqrt{(4 - 1)^{2} + (1 - 2)^{2}}\]
= \[\sqrt{3^{2} + (-1)^2}\]
= \[\sqrt{9 + 1}\]
∴ \[\mathrm{d}(\mathrm{Q},\mathrm{R}) = \sqrt{10}\] ...(ii)
\[\mathrm{d}(\mathrm{P},\mathrm{R})=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\]
= \[\sqrt{[4 - (-2)]^{2} + (1 - 3)^{2}}\]
= \[\sqrt{6^{2} + (-2)^2}\]
= \[\sqrt{36 + 4}\]
= \[\sqrt{40}\]
= \[2\sqrt{10}\]
∴ \[\mathrm{d}(\mathrm{P},\mathrm{R}) = 2\sqrt{10}\] ...(iii)
On adding (i) and (ii),
\[\mathrm{d}(\mathrm{P},\mathrm{Q}) + \mathrm{d}(\mathrm{Q},\mathrm{R}) = \sqrt{10} + \sqrt{10} = 2\sqrt{10}\]
∴ d(P, Q) + d(Q, R) = d(P, R) …[From (iii)]
∴ Points P, Q and R are collinear.
APPEARS IN
संबंधित प्रश्न
If A(4, 3), B(-1, y) and C(3, 4) are the vertices of a right triangle ABC, right-angled at A, then find the value of y.
Find the coordinates of the circumcentre of the triangle whose vertices are (8, 6), (8, – 2) and (2, – 2). Also, find its circum radius
If the distance between the points (4, k) and (1, 0) is 5, then what can be the possible values of k?
The length of a line segment is of 10 units and the coordinates of one end-point are (2, -3). If the abscissa of the other end is 10, find the ordinate of the other end.
Find the centre of the circle passing through (6, -6), (3, -7) and (3, 3)
AB and AC are the two chords of a circle whose radius is r. If p and q are
the distance of chord AB and CD, from the centre respectively and if
AB = 2AC then proove that 4q2 = p2 + 3r2.
Find the distance between the following pair of point in the coordinate plane :
(5 , -2) and (1 , 5)
Prove that the points (a, b), (a + 3, b + 4), (a − 1, b + 7) and (a − 4, b + 3) are the vertices of a parallelogram.
Find the coordinates of the points on the y-axis, which are at a distance of 10 units from the point (-8, 4).
A point A is at a distance of `sqrt(10)` unit from the point (4, 3). Find the co-ordinates of point A, if its ordinate is twice its abscissa.
What point on the x-axis is equidistant from the points (7, 6) and (-3, 4)?
A point P lies on the x-axis and another point Q lies on the y-axis.
If the abscissa of point P is -12 and the ordinate of point Q is -16; calculate the length of line segment PQ.
Given A = (3, 1) and B = (0, y - 1). Find y if AB = 5.
The length of line PQ is 10 units and the co-ordinates of P are (2, -3); calculate the co-ordinates of point Q, if its abscissa is 10.
Calculate the distance between A (7, 3) and B on the x-axis, whose abscissa is 11.
By using the distance formula prove that each of the following sets of points are the vertices of a right angled triangle.
(i) (6, 2), (3, -1) and (- 2, 4)
(ii) (-2, 2), (8, -2) and (-4, -3).
If the point (x, y) is at equidistant from the point (a + b, b – a) and (a-b, a + b). Prove that ay = bx.
Find distance of point A(6, 8) from origin
Case Study -2
A hockey field is the playing surface for the game of hockey. Historically, the game was played on natural turf (grass) but nowadays it is predominantly played on an artificial turf.
It is rectangular in shape - 100 yards by 60 yards. Goals consist of two upright posts placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must be 3.66 metres (4 yards) apart, and the lower edge of the crossbar must be 2.14 metres (7 feet) above the ground.
Each team plays with 11 players on the field during the game including the goalie. Positions you might play include -
- Forward: As shown by players A, B, C and D.
- Midfielders: As shown by players E, F and G.
- Fullbacks: As shown by players H, I and J.
- Goalie: As shown by player K.
Using the picture of a hockey field below, answer the questions that follow:
The coordinates of the centroid of ΔEHJ are ______.
Ayush starts walking from his house to office. Instead of going to the office directly, he goes to a bank first, from there to his daughter’s school and then reaches the office. What is the extra distance travelled by Ayush in reaching his office? (Assume that all distances covered are in straight lines). If the house is situated at (2, 4), bank at (5, 8), school at (13, 14) and office at (13, 26) and coordinates are in km.