Advertisements
Advertisements
प्रश्न
Prove that the points (3, 0), (4, 5), (-1, 4) and (-2, -1), taken in order, form a rhombus.
Also, find its area.
उत्तर
The distance d between two points `(x_1, y_1)` and `x_2,y_2)` is given by the formula
`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`
In a rhombus, all the sides are equal in length. And the area ‘A’ of a rhombus is given as
`A = 1/2("Product of both diagonals")`
Here the four points are A(3,0), B(4,5), C(−1,4) and D(−2,−1).
First, let us check if all the four sides are equal.
`AB = sqrt((3 -4)^2 + (0 - 5)^2)`
`= sqrt((-1)^2 + (-5)^2)`
`= sqrt(1 + 25)`
`= sqrt(25 + 1)`
`BC=sqrt26`
`CD = sqrt((-1+2)^2 + (4 + 1)^2)`
`= sqrt((1)^2 +(5)^2)`
`= sqrt(26)`
`AD = sqrt((3 + 2)^2 + (0 + 1)^2)`
`= sqrt((5)^2 + (1)^2)`
`= sqrt(25 + 1)`
`AD = sqrt26`
Here, we see that all the sides are equal, so it has to be a rhombus.
Hence we have proved that the quadrilateral formed by the given four vertices is a rhombus.
Now let us find out the lengths of the diagonals of the rhombus.
`AC = sqrt((3 + 1)^2 + (0 - 4)^2)`
`= sqrt((4)^2 + (-4)^2)`
`= sqrt((6)^2 + (6)^2)`
`= sqrt(36 + 36)`
`BD = 6sqrt2`
Now using these values in the formula for the area of a rhombus we have,
`A = ((6sqrt2)(4sqrt2))/2`
`= ((6)(4)(2))/2`
A = 24
Thus the area of the given rhombus is 24 square units.
APPEARS IN
संबंधित प्रश्न
On which axis do the following points lie?
P(5, 0)
Find the distance between the following pair of points:
(a, 0) and (0, b)
Find the coordinates of the circumcentre of the triangle whose vertices are (3, 0), (-1, -6) and (4, -1). Also, find its circumradius.
In what ratio is the line segment joining the points (-2,-3) and (3, 7) divided by the y-axis? Also, find the coordinates of the point of division.
Find the ratio in which the line segment joining (-2, -3) and (5, 6) is divided by x-axis Also, find the coordinates of the point of division in each case.
Prove that the points (4, 5) (7, 6), (6, 3) (3, 2) are the vertices of a parallelogram. Is it a rectangle.
Prove that (4, 3), (6, 4) (5, 6) and (3, 5) are the angular points of a square.
The line segment joining the points P(3, 3) and Q(6, -6) is trisected at the points A and B such that Ais nearer to P. If A also lies on the line given by 2x + y + k = 0, find the value of k.
Show that the following points are the vertices of a rectangle.
A (2, -2), B(14,10), C(11,13) and D(-1,1)
The midpoint of the line segment joining A (2a, 4) and B (-2, 3b) is C (1, 2a+1). Find the values of a and b.
The base BC of an equilateral triangle ABC lies on y-axis. The coordinates of point C are (0, -3). The origin is the midpoint of the base. Find the coordinates of the points A and B. Also, find the coordinates of another point D such that ABCD is a rhombus.
The distance of the point P (4, 3) from the origin is
The ratio in which (4, 5) divides the join of (2, 3) and (7, 8) is
If (−2, 1) is the centroid of the triangle having its vertices at (x , 0) (5, −2), (−8, y), then x, y satisfy the relation
The coordinates of the fourth vertex of the rectangle formed by the points (0, 0), (2, 0), (0, 3) are
In which quadrant does the point (-4, -3) lie?
The line segment joining the points A(2, 1) and B (5, - 8) is trisected at the points P and Q such that P is nearer to A. If P also lies on the line given by 2x - y + k= 0 find the value of k.
If the sum of X-coordinates of the vertices of a triangle is 12 and the sum of Y-coordinates is 9, then the coordinates of centroid are ______
The distance of the point P(2, 3) from the x-axis is ______.
Abscissa of a point is positive in ______.