हिंदी

Refer to Exercise 7 above. Find the maximum value of Z. - Mathematics

Advertisements
Advertisements

प्रश्न

Refer to Exercise 7 above. Find the maximum value of Z.

योग

उत्तर

As per the evaluating table for the value of Z

It is clear that the maximum value of Z is 47 at (3, 2).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Linear Programming - Exercise [पृष्ठ २५१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 12 Linear Programming
Exercise | Q 8 | पृष्ठ २५१

संबंधित प्रश्न

Solve the following Linear Programming Problems graphically:

Maximise Z = 3x + 4y

subject to the constraints : x + y ≤ 4, x ≥ 0, y ≥ 0.


Solve the following Linear Programming Problems graphically:

Minimise Z = x + 2y

subject to 2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Minimise and Maximise Z = x + 2y 

subject to x + 2y ≥ 100, 2x – y ≤ 0, 2x + y ≤ 200; x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Maximise Z = x + y, subject to x – y ≤ –1, –x + y ≤ 0, x, y ≥ 0.


A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per bag contains 3 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional elements A, 11.25 units of element B, and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?


A dietician wishes to mix together two kinds of food X and Y in such a way that the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and 8 units of vitamin C. The vitamin content of one kg food is given below:

Food Vitamin A Vitamin B Vitamin C
X 1 2 3
Y 2 2 1

One kg of food X costs Rs 16 and one kg of food Y costs Rs 20. Find the least cost of the mixture which will produce the required diet?

 


The minimum value of the objective function Z = ax + by in a linear programming problem always occurs at only one corner point of the feasible region


Maximise Z = 3x + 4y, subject to the constraints: x + y ≤ 1, x ≥ 0, y ≥ 0


The feasible region for a LPP is shown in figure. Evaluate Z = 4x + y at each of the corner points of this region. Find the minimum value of Z, if it exists.


A man rides his motorcycle at the speed of 50 km/hour. He has to spend Rs 2 per km on petrol. If he rides it at a faster speed of 80 km/hour, the petrol cost increases to Rs 3 per km. He has atmost Rs 120 to spend on petrol and one hour’s time. He wishes to find the maximum distance that he can travel. Express this problem as a linear programming problem


Refer to question 15. Determine the maximum distance that the man can travel.


Refer to Question 27. (Maximum value of Z + Minimum value of Z) is equal to ______.


The feasible region for an LPP is shown in the figure. Let F = 3x – 4y be the objective function. Maximum value of F is ______.


Refer to Question 30. Minimum value of F is ______.


In a LPP, the linear inequalities or restrictions on the variables are called ____________.


In a LPP if the objective function Z = ax + by has the same maximum value on two corner points of the feasible region, then every point on the line segment joining these two points give the same ______ value.


If the feasible region for a LPP is unbounded, maximum or minimum of the objective function Z = ax + by may or may not exist.


In a LPP, the minimum value of the objective function Z = ax + by is always 0 if the origin is one of the corner point of the feasible region.


In a LPP, the maximum value of the objective function Z = ax + by is always finite.


Based on the given shaded region as the feasible region in the graph, at which point(s) is the objective function Z = 3x + 9y maximum?


In a linear programming problem, the constraints on the decision variables x and y are x − 3y ≥ 0, y ≥ 0, 0 ≤ x ≤ 3. The feasible region:


The maximum value of the object function Z = 5x + 10 y subject to the constraints x + 2y ≤ 120, x + y ≥ 60, x - 2y ≥ 0, x ≥ 0, y ≥ 0 is ____________.


A maximum or a minimum may not exist for a linear programming problem if ____________.


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. If M and m respectively be the largest and smallest values at corner points then ____________.


Maximize Z = 3x + 5y, subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0.


The feasible region for an LPP is shown shaded in the figure. Let Z = 3x - 4y be the objective function. Minimum of Z occurs at ____________.


Maximize Z = 10×1 + 25×2, subject to 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3, x1 + x2 ≤ 5.


The feasible region for an LPP is shown shaded in the following figure. Minimum of Z = 4x + 3y occurs at the point.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×