हिंदी

A Farmer Mixes Two Brands P and Q of Cattle Feed. Brand P, Costing Rs 250 per Bag Contains 3 Units of Nutritional Element a Determine the Number of Bags of Each Brand Which Should Be Mixed in Order to Produce a Mixture Having a Minimum Cost per Bag? What is the Minimum Cost of the Mixture per Bag? - Mathematics

Advertisements
Advertisements

प्रश्न

A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per bag contains 3 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional elements A, 11.25 units of element B, and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?

उत्तर

Let the farmer mix x bags of brand P and y bags of brand Q.

The given information can be compiled in a table as follows.

  Vitamin A (units/bag) Vitamin B (units/bag) Vitamin C (units/bag) Cost (Rs/bag)
Food P 3 2.5 2 250
Food Q 1.5 11.25 3 200
Requirement (units/bag) 18 45 24  

The given problem can be formulated as follows.

Minimize z = 250x + 200y … (1)

subject to the constraints,

The feasible region determined by the system of constraints is as follows

The corner points of the feasible region are A (18, 0), B (9, 2), C (3, 6), and D (0, 12).

The values of z at these corner points are as follows.

Corner point z = 250x + 200y  
A (18, 0) 4500  
B (9, 2) 2650  
C (3, 6) 1950 → Minimum
D (0, 12) 2400  

As the feasible region is unbounded, therefore, 1950 may or may not be the minimum value of z.

For this, we draw a graph of the inequality, 250x + 200y < 1950 or 5x + 4y < 39, and check whether the resulting half plane has points in common with the feasible region or not.

It can be seen that the feasible region has no common point with 5x + 4y < 39

Therefore, the minimum value of z is 1950 at (3, 6).

Thus, 3 bags of brand P and 6 bags of brand Q should be used in the mixture to minimize the cost to Rs 1950.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Linear Programming - Exercise 12.2 [पृष्ठ ५२६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 12 Linear Programming
Exercise 12.2 | Q 2 | पृष्ठ ५२६

संबंधित प्रश्न

Two tailors, A and B, earn Rs 300 and Rs 400 per day respectively. A can stitch 6 shirts and 4 pairs of trousers while B can stitch 10 shirts and 4 pairs of trousers per day. To find how many days should each of them work and if it is desired to produce at least 60 shirts and 32 pairs of trousers at a minimum labour cost, formulate this as an LPP


Solve the following Linear Programming Problems graphically:

Maximise Z = 3x + 4y

subject to the constraints : x + y ≤ 4, x ≥ 0, y ≥ 0.


Solve the following Linear Programming Problems graphically:

Maximise Z = 3x + 2y

subject to x + 2y ≤ 10, 3x + y ≤ 15, x, y ≥ 0.


Solve the following Linear Programming Problems graphically:

Minimise Z = x + 2y

subject to 2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Minimise and Maximise Z = 5x + 10 y

subject to x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Minimise and Maximise Z = x + 2y 

subject to x + 2y ≥ 100, 2x – y ≤ 0, 2x + y ≤ 200; x, y ≥ 0.


A dietician wishes to mix together two kinds of food X and Y in such a way that the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and 8 units of vitamin C. The vitamin content of one kg food is given below:

Food Vitamin A Vitamin B Vitamin C
X 1 2 3
Y 2 2 1

One kg of food X costs Rs 16 and one kg of food Y costs Rs 20. Find the least cost of the mixture which will produce the required diet?

 


A small firm manufactures necklaces and bracelets. The total number of necklaces and bracelets that it can handle per day is at most 24. It takes one hour to make a bracelet and half an hour to make a necklace. The maximum number of hours available per day is 16. If the profit on a necklace is Rs 100 and that on a bracelet is Rs 300. Formulate on L.P.P. for finding how many of each should be produced daily to maximize the profit?

It is being given that at least one of each must be produced.


To maintain his health a person must fulfil certain minimum daily requirements for several kinds of nutrients. Assuming that there are only three kinds of nutrients-calcium, protein and calories and the person's diet consists of only two food items, I and II, whose price and nutrient contents are shown in the table below:
 

  Food I
(per lb)
  Food II
(per lb)
    Minimum daily requirement
for the nutrient
 Calcium 10   5     20
Protein 5   4     20
 Calories 2   6     13
 Price (Rs) 60   100      


What combination of two food items will satisfy the daily requirement and entail the least cost? Formulate this as a LPP.


Determine the maximum value of Z = 11x + 7y subject to the constraints : 2x + y ≤ 6, x ≤ 2, x ≥ 0, y ≥ 0.


The feasible region for a LPP is shown in Figure. Find the minimum value of Z = 11x + 7y


The feasible region for a LPP is shown in figure. Evaluate Z = 4x + y at each of the corner points of this region. Find the minimum value of Z, if it exists.


In figure, the feasible region (shaded) for a LPP is shown. Determine the maximum and minimum value of Z = x + 2y.


Refer to question 15. Determine the maximum distance that the man can travel.


Refer to question 15. Determine the maximum distance that the man can travel.


In order to supplement daily diet, a person wishes to take some X and some wishes Y tablets. The contents of iron, calcium and vitamins in X and Y (in milligrams per tablet) are given as below:

Tablets Iron Calcium Vitamin
X 6 3 2
Y 2 3 4

The person needs atleast 18 milligrams of iron, 21 milligrams of calcium and 16 milligrams of vitamin. The price of each tablet of X and Y is Rs 2 and Rs 1 respectively. How many tablets of each should the person take in order to satisfy the above requirement at the minimum cost?


A company makes 3 model of calculators: A, B and C at factory I and factory II. The company has orders for at least 6400 calculators of model A, 4000 calculator of model B and 4800 calculator of model C. At factory I, 50 calculators of model A, 50 of model B and 30 of model C are made every day; at factory II, 40 calculators of model A, 20 of model B and 40 of model C are made everyday. It costs Rs 12000 and Rs 15000 each day to operate factory I and II, respectively. Find the number of days each factory should operate to minimise the operating costs and still meet the demand.


The feasible region for an LPP is shown in the figure. Let F = 3x – 4y be the objective function. Maximum value of F is ______.


Refer to Question 32, Maximum of F – Minimum of F = ______.


A feasible region of a system of linear inequalities is said to be ______ if it can be enclosed within a circle.


Maximum value of the objective function Z = ax + by in a LPP always occurs at only one corner point of the feasible region.


In the given graph, the feasible region for an LPP is shaded. The objective function Z = 2x – 3y will be minimum at:


Objective function of a linear programming problem is ____________.


A linear programming problem is one that is concerned with ____________.


In linear programming infeasible solutions


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. If M and m respectively be the largest and smallest values at corner points then ____________.


In a LPP, the objective function is always ____________.


Maximize Z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.


Maximize Z = 7x + 11y, subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.


Maximize Z = 6x + 4y, subject to x ≤ 2, x + y ≤ 3, -2x + y ≤ 1, x ≥ 0, y ≥ 0.


Maximize Z = 10×1 + 25×2, subject to 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3, x1 + x2 ≤ 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×