हिंदी

Refer to question 15. Determine the maximum distance that the man can travel. - Mathematics

Advertisements
Advertisements

प्रश्न

Refer to question 15. Determine the maximum distance that the man can travel.

सारिणी
योग

उत्तर

Referring to the solution of Question No.15, we have

Maximise Z = x + y subject to the constraints

Let 2x + 3y = 120

x 0 60
y 40 0

Let 8x + 5y = 400

x 0 50
y 80 0


2x + 3y ≤ 120  ......(i)

8x + 5y ≤ 400  ......(ii)

x ≥ 0, y ≥ 0

On solving eq. (i) and (ii) we get

x = `300/7` and y = `80/7`

Here, OABC is the feasible region whose corner points are O(0, 0), A(50, 0), `"B"(300/7, 80/7)` and C(0, 40).

Let us evaluate the value of Z

Corner points Value of Z = x + y  
O(0, 0) Z = 0 + 0 = 0  
A(50, 0) Z = 50 + 0 = 50 km  
`"B"(300/7, 80/7)`

Z = `300/7 + 80/7`

= `380/7` = 54.3 km

← Maximum
C(0, 40) Z = 0 + 40 = 40 km  

Hence, the maximum distance that the man can travel is `54 2/7` km at `(300/7, 80/7)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Linear Programming - Exercise [पृष्ठ २५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 12 Linear Programming
Exercise | Q 20 | पृष्ठ २५३

संबंधित प्रश्न

Solve the following Linear Programming Problems graphically:

Maximise Z = 3x + 4y

subject to the constraints : x + y ≤ 4, x ≥ 0, y ≥ 0.


Solve the following Linear Programming Problems graphically:

Maximise Z = 5x + 3y

subject to 3x + 5y ≤ 15, 5x + 2y ≤ 10, x ≥ 0, y ≥ 0


Solve the following Linear Programming Problems graphically:

Maximise Z = 3x + 2y

subject to x + 2y ≤ 10, 3x + y ≤ 15, x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Minimise and Maximise Z = x + 2y 

subject to x + 2y ≥ 100, 2x – y ≤ 0, 2x + y ≤ 200; x, y ≥ 0.


Refer to Example 9. How many packets of each food should be used to maximize the amount of vitamin A in the diet? What is the maximum amount of vitamin A in the diet?


An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made on each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to travel by economy class than by the executive class. Determine how many tickets of each type must be sold in order to maximize the profit for the airline. What is the maximum profit?


Determine the maximum value of Z = 3x + 4y if the feasible region (shaded) for a LPP is shown in Figure


Feasible region (shaded) for a LPP is shown in Figure. Maximise Z = 5x + 7y.


Refer to question 14. How many sweaters of each type should the company make in a day to get a maximum profit? What is the maximum profit.


Refer to question 15. Determine the maximum distance that the man can travel.


Maximise Z = x + y subject to x + 4y ≤ 8, 2x + 3y ≤ 12, 3x + y ≤ 9, x ≥ 0, y ≥ 0.


A manufacturer produces two Models of bikes-Model X and Model Y. Model X takes a 6 man-hours to make per unit, while Model Y takes 10 man-hours per unit. There is a total of 450 man-hour available per week. Handling and Marketing costs are Rs 2000 and Rs 1000 per unit for Models X and Y respectively. The total funds available for these purposes are Rs 80,000 per week. Profits per unit for Models X and Y are Rs 1000 and Rs 500, respectively. How many bikes of each model should the manufacturer produce so as to yield a maximum profit? Find the maximum profit.


A company makes 3 model of calculators: A, B and C at factory I and factory II. The company has orders for at least 6400 calculators of model A, 4000 calculator of model B and 4800 calculator of model C. At factory I, 50 calculators of model A, 50 of model B and 30 of model C are made every day; at factory II, 40 calculators of model A, 20 of model B and 40 of model C are made everyday. It costs Rs 12000 and Rs 15000 each day to operate factory I and II, respectively. Find the number of days each factory should operate to minimise the operating costs and still meet the demand.


Refer to Question 30. Minimum value of F is ______.


Corner points of the feasible region for an LPP are (0, 2), (3, 0), (6, 0), (6, 8) and (0, 5). Let F = 4x + 6y be the objective function. The Minimum value of F occurs at  ______.


Refer to Question 32, Maximum of F – Minimum of F = ______.


If the feasible region for a LPP is ______ then the optimal value of the objective function Z = ax + by may or may not exist.


In a LPP if the objective function Z = ax + by has the same maximum value on two corner points of the feasible region, then every point on the line segment joining these two points give the same ______ value.


The feasible region for an LPP is always a ______ polygon.


Based on the given shaded region as the feasible region in the graph, at which point(s) is the objective function Z = 3x + 9y maximum?


In a linear programming problem, the constraints on the decision variables x and y are x − 3y ≥ 0, y ≥ 0, 0 ≤ x ≤ 3. The feasible region:


In linear programming infeasible solutions


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. Let M and m respectively be the largest and smallest values at corner points. In case feasible region is unbounded, M is the maximum value of the objective function if ____________.


Maximize Z = 3x + 5y, subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0.


Maximize Z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×