हिंदी

If the feasible region for a LPP is ______ then the optimal value of the objective function Z = ax + by may or may not exist. - Mathematics

Advertisements
Advertisements

प्रश्न

If the feasible region for a LPP is ______ then the optimal value of the objective function Z = ax + by may or may not exist.

रिक्त स्थान भरें

उत्तर

If the feasible region for a LPP is open unbounded then the optimal value of the objective function Z = ax + by may or may not exist.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Linear Programming - Exercise [पृष्ठ २५७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 12 Linear Programming
Exercise | Q 37 | पृष्ठ २५७

संबंधित प्रश्न

Solve the following Linear Programming Problems graphically:

Minimise Z = – 3x + 4 y

subject to x + 2y ≤ 8, 3x + 2y ≤ 12, x ≥ 0, y ≥ 0.


Solve the following Linear Programming Problems graphically:

Maximise Z = 3x + 2y

subject to x + 2y ≤ 10, 3x + y ≤ 15, x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Maximise Z = x + y, subject to x – y ≤ –1, –x + y ≤ 0, x, y ≥ 0.


A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per bag contains 3 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional elements A, 11.25 units of element B, and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?


A dietician wishes to mix together two kinds of food X and Y in such a way that the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and 8 units of vitamin C. The vitamin content of one kg food is given below:

Food Vitamin A Vitamin B Vitamin C
X 1 2 3
Y 2 2 1

One kg of food X costs Rs 16 and one kg of food Y costs Rs 20. Find the least cost of the mixture which will produce the required diet?

 


To maintain his health a person must fulfil certain minimum daily requirements for several kinds of nutrients. Assuming that there are only three kinds of nutrients-calcium, protein and calories and the person's diet consists of only two food items, I and II, whose price and nutrient contents are shown in the table below:
 

  Food I
(per lb)
  Food II
(per lb)
    Minimum daily requirement
for the nutrient
 Calcium 10   5     20
Protein 5   4     20
 Calories 2   6     13
 Price (Rs) 60   100      


What combination of two food items will satisfy the daily requirement and entail the least cost? Formulate this as a LPP.


The feasible region for a LPP is shown in Figure. Find the minimum value of Z = 11x + 7y


In figure, the feasible region (shaded) for a LPP is shown. Determine the maximum and minimum value of Z = x + 2y.


Refer to quastion 12. What will be the minimum cost?


A company makes 3 model of calculators: A, B and C at factory I and factory II. The company has orders for at least 6400 calculators of model A, 4000 calculator of model B and 4800 calculator of model C. At factory I, 50 calculators of model A, 50 of model B and 30 of model C are made every day; at factory II, 40 calculators of model A, 20 of model B and 40 of model C are made everyday. It costs Rs 12000 and Rs 15000 each day to operate factory I and II, respectively. Find the number of days each factory should operate to minimise the operating costs and still meet the demand.


The corner points of the feasible region determined by the system of linear constraints are (0, 0), (0, 40), (20, 40), (60, 20), (60, 0). The objective function is Z = 4x + 3y ______.

Compare the quantity in Column A and Column B

Column A Column B
Maximum of Z 325

Refer to Question 27. Maximum of Z occurs at ______.


The feasible region for an LPP is shown in the figure. Let F = 3x – 4y be the objective function. Maximum value of F is ______.


Corner points of the feasible region for an LPP are (0, 2), (3, 0), (6, 0), (6, 8) and (0, 5). Let F = 4x + 6y be the objective function. The Minimum value of F occurs at  ______.


In a LPP, the linear inequalities or restrictions on the variables are called ____________.


In a LPP, the objective function is always ______.


The feasible region for an LPP is always a ______ polygon.


In a LPP, the minimum value of the objective function Z = ax + by is always 0 if the origin is one of the corner point of the feasible region.


In a LPP, the maximum value of the objective function Z = ax + by is always finite.


In the given graph, the feasible region for an LPP is shaded. The objective function Z = 2x – 3y will be minimum at:


In a linear programming problem, the constraints on the decision variables x and y are x − 3y ≥ 0, y ≥ 0, 0 ≤ x ≤ 3. The feasible region:


Objective function of a linear programming problem is ____________.


A linear programming problem is one that is concerned with ____________.


In linear programming infeasible solutions


A maximum or a minimum may not exist for a linear programming problem if ____________.


In a LPP, the objective function is always ____________.


Maximize Z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.


The feasible region for an LPP is shown shaded in the following figure. Minimum of Z = 4x + 3y occurs at the point.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×