हिंदी

In figure, the feasible region (shaded) for a LPP is shown. Determine the maximum and minimum value of Z = x + 2y. - Mathematics

Advertisements
Advertisements

प्रश्न

In figure, the feasible region (shaded) for a LPP is shown. Determine the maximum and minimum value of Z = x + 2y.

सारिणी
योग

उत्तर

Here, corner points are given as follows:

`"R"(7/2, 3/4)`

`"Q"(3/2, 15/4)`

`"P"(3/13, 24/13)`

And `"S"(18/7, 2/7)`

Now, evaluating the value of Z for the feasible region RQPS.

Corner points Value of Z = x + 2y  
`"R"(7/2, 3/4)` Z = `7/2 + 2(3/4) = 5` ← Maximum
`"Q"(3/2, 15/4)` Z = `3/2 + 2(15/4) = 9`  
`"P"(3/13, 24/13)` Z = `3/13 + 2(24/13) = 51/13`  
`"S"(18/7, 2/7)` Z = `18/7 + 2(2/7) = 22/7` ← Minimum

Hence, the maximum value of Z is 9 at `(3/2, 15/4)` and the minimum value of Z is `22/7` at `(18/7, 2/7)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Linear Programming - Exercise [पृष्ठ २५२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 12 Linear Programming
Exercise | Q 10 | पृष्ठ २५२

संबंधित प्रश्न

Solve the following Linear Programming Problems graphically:

Minimise Z = x + 2y

subject to 2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Minimise and Maximise Z = 5x + 10 y

subject to x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x, y ≥ 0.


Refer to Example 9. How many packets of each food should be used to maximize the amount of vitamin A in the diet? What is the maximum amount of vitamin A in the diet?


An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made on each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to travel by economy class than by the executive class. Determine how many tickets of each type must be sold in order to maximize the profit for the airline. What is the maximum profit?


Maximise the function Z = 11x + 7y, subject to the constraints: x ≤ 3, y ≤ 2, x ≥ 0, y ≥ 0.


Minimise Z = 13x – 15y subject to the constraints: x + y ≤ 7, 2x – 3y + 6 ≥ 0, x ≥ 0, y ≥ 0


Refer to Exercise 7 above. Find the maximum value of Z.


Refer to question 15. Determine the maximum distance that the man can travel.


Maximise Z = x + y subject to x + 4y ≤ 8, 2x + 3y ≤ 12, 3x + y ≤ 9, x ≥ 0, y ≥ 0.


The feasible solution for a LPP is shown in Figure. Let Z = 3x – 4y be the objective function. Minimum of Z occurs at ______.


Refer to Question 27. (Maximum value of Z + Minimum value of Z) is equal to ______.


The feasible region for an LPP is shown in the figure. Let F = 3x – 4y be the objective function. Maximum value of F is ______.


Refer to Question 30. Minimum value of F is ______.


Corner points of the feasible region for an LPP are (0, 2), (3, 0), (6, 0), (6, 8) and (0, 5). Let F = 4x + 6y be the objective function. The Minimum value of F occurs at  ______.


In a LPP, the objective function is always ______.


If the feasible region for a LPP is ______ then the optimal value of the objective function Z = ax + by may or may not exist.


In a LPP, the minimum value of the objective function Z = ax + by is always 0 if the origin is one of the corner point of the feasible region.


A linear programming problem is as follows:

Minimize Z = 30x + 50y

Subject to the constraints: 3x + 5y ≥ 15, 2x + 3y ≤ 18, x ≥ 0, y ≥ 0

In the feasible region, the minimum value of Z occurs at:


Objective function of a linear programming problem is ____________.


The maximum value of the object function Z = 5x + 10 y subject to the constraints x + 2y ≤ 120, x + y ≥ 60, x - 2y ≥ 0, x ≥ 0, y ≥ 0 is ____________.


A linear programming problem is one that is concerned with ____________.


A maximum or a minimum may not exist for a linear programming problem if ____________.


If two corner points of the feasible region are both optimal solutions of the same type, i.e., both produce the same maximum or minimum.


In a LPP, the objective function is always ____________.


Maximize Z = 3x + 5y, subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0.


Maximize Z = 7x + 11y, subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.


The feasible region for an LPP is shown shaded in the following figure. Minimum of Z = 4x + 3y occurs at the point.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×