हिंदी

Minimise Z = 13x – 15y subject to the constraints: x + y ≤ 7, 2x – 3y + 6 ≥ 0, x ≥ 0, y ≥ 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Minimise Z = 13x – 15y subject to the constraints: x + y ≤ 7, 2x – 3y + 6 ≥ 0, x ≥ 0, y ≥ 0

सारिणी
योग

उत्तर

Given that: Z = 13x – 15y and the constraints

x + y ≤ 7, 2x – 3y + 6 ≥ 0, x ≥ 0, y ≥ 0

Let x + y = 7

x 3 4
y 4 3

Let 2x – 3y + 6 = 0

x 1 -3
y 2 0

The shaded region is the feasible region determined by the constraints x + y ≤ 7, 2x – 3y + 6 ≥ 0, x ≥ 0, y ≥ 0

The feasible region is bounded with four corners O(0, 0), A(7, 0), B(3, 4), C(0, 2)

So, the maximum value can occur at any corner.

Let us evaluate the value of Z.

Corner points Value of Z  
O(0, 0) 13(0) – 15(0) = 0  
A(7, 0) 13(7) – 15(0) = 91  
B(3, 4) 13(3) – 15(4) = – 21  
C(0, 2) 13(0) – 15(2) = – 30 ← Minimum

Hence, the minimum value of Z is – 30 at (0, 2).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Linear Programming - Exercise [पृष्ठ २५०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 12 Linear Programming
Exercise | Q 4 | पृष्ठ २५०

संबंधित प्रश्न

Two tailors, A and B, earn Rs 300 and Rs 400 per day respectively. A can stitch 6 shirts and 4 pairs of trousers while B can stitch 10 shirts and 4 pairs of trousers per day. To find how many days should each of them work and if it is desired to produce at least 60 shirts and 32 pairs of trousers at a minimum labour cost, formulate this as an LPP


Solve the following Linear Programming Problems graphically:

Maximise Z = 5x + 3y

subject to 3x + 5y ≤ 15, 5x + 2y ≤ 10, x ≥ 0, y ≥ 0


Show that the minimum of Z occurs at more than two points.

Minimise and Maximise Z = x + 2y 

subject to x + 2y ≥ 100, 2x – y ≤ 0, 2x + y ≤ 200; x, y ≥ 0.


Refer to Example 9. How many packets of each food should be used to maximize the amount of vitamin A in the diet? What is the maximum amount of vitamin A in the diet?


A dietician wishes to mix together two kinds of food X and Y in such a way that the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and 8 units of vitamin C. The vitamin content of one kg food is given below:

Food Vitamin A Vitamin B Vitamin C
X 1 2 3
Y 2 2 1

One kg of food X costs Rs 16 and one kg of food Y costs Rs 20. Find the least cost of the mixture which will produce the required diet?

 


A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:

Type of toy Machines
I II III
A 12 18 6
B 6 0 9

Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is Rs 7.50 and that on each toy of type B is Rs 5, show that 15 toys of type A and 30 of type B should be manufactured in a day to get maximum profit.

 


If the feasible region for a linear programming problem is bounded, then the objective function Z = ax + by has both a maximum and a minimum value on R.


The minimum value of the objective function Z = ax + by in a linear programming problem always occurs at only one corner point of the feasible region


Determine the maximum value of Z = 11x + 7y subject to the constraints : 2x + y ≤ 6, x ≤ 2, x ≥ 0, y ≥ 0.


Maximise Z = 3x + 4y, subject to the constraints: x + y ≤ 1, x ≥ 0, y ≥ 0


Determine the maximum value of Z = 3x + 4y if the feasible region (shaded) for a LPP is shown in Figure


Feasible region (shaded) for a LPP is shown in Figure. Maximise Z = 5x + 7y.


The feasible region for a LPP is shown in Figure. Find the minimum value of Z = 11x + 7y


The feasible solution for a LPP is shown in Figure. Let Z = 3x – 4y be the objective function. Minimum of Z occurs at ______.


Refer to Question 30. Minimum value of F is ______.


In a LPP, the linear inequalities or restrictions on the variables are called ____________.


In a LPP if the objective function Z = ax + by has the same maximum value on two corner points of the feasible region, then every point on the line segment joining these two points give the same ______ value.


A corner point of a feasible region is a point in the region which is the ______ of two boundary lines.


For an objective function Z = ax + by, where a, b > 0; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is:


Objective function of a linear programming problem is ____________.


Z = 7x + y, subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0. The minimum value of Z occurs at ____________.


A linear programming problem is one that is concerned with ____________.


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. If M and m respectively be the largest and smallest values at corner points then ____________.


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. Let M and m respectively be the largest and smallest values at corner points. In case feasible region is unbounded, M is the maximum value of the objective function if ____________.


Maximize Z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.


Maximize Z = 7x + 11y, subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.


Maximize Z = 10×1 + 25×2, subject to 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3, x1 + x2 ≤ 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×