English

Refer to question 15. Determine the maximum distance that the man can travel. - Mathematics

Advertisements
Advertisements

Question

Refer to question 15. Determine the maximum distance that the man can travel.

Chart
Sum

Solution

Referring to the solution of Question No.15, we have

Maximise Z = x + y subject to the constraints

Let 2x + 3y = 120

x 0 60
y 40 0

Let 8x + 5y = 400

x 0 50
y 80 0


2x + 3y ≤ 120  ......(i)

8x + 5y ≤ 400  ......(ii)

x ≥ 0, y ≥ 0

On solving eq. (i) and (ii) we get

x = `300/7` and y = `80/7`

Here, OABC is the feasible region whose corner points are O(0, 0), A(50, 0), `"B"(300/7, 80/7)` and C(0, 40).

Let us evaluate the value of Z

Corner points Value of Z = x + y  
O(0, 0) Z = 0 + 0 = 0  
A(50, 0) Z = 50 + 0 = 50 km  
`"B"(300/7, 80/7)`

Z = `300/7 + 80/7`

= `380/7` = 54.3 km

← Maximum
C(0, 40) Z = 0 + 40 = 40 km  

Hence, the maximum distance that the man can travel is `54 2/7` km at `(300/7, 80/7)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Linear Programming - Exercise [Page 253]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 12 Linear Programming
Exercise | Q 20 | Page 253

RELATED QUESTIONS

Solve the following Linear Programming Problems graphically:

Minimise Z = x + 2y

subject to 2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Maximise Z = x + y, subject to x – y ≤ –1, –x + y ≤ 0, x, y ≥ 0.


A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per bag contains 3 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional elements A, 11.25 units of element B, and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?


A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:

Type of toy Machines
I II III
A 12 18 6
B 6 0 9

Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is Rs 7.50 and that on each toy of type B is Rs 5, show that 15 toys of type A and 30 of type B should be manufactured in a day to get maximum profit.

 


An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made on each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to travel by economy class than by the executive class. Determine how many tickets of each type must be sold in order to maximize the profit for the airline. What is the maximum profit?


To maintain his health a person must fulfil certain minimum daily requirements for several kinds of nutrients. Assuming that there are only three kinds of nutrients-calcium, protein and calories and the person's diet consists of only two food items, I and II, whose price and nutrient contents are shown in the table below:
 

  Food I
(per lb)
  Food II
(per lb)
    Minimum daily requirement
for the nutrient
 Calcium 10   5     20
Protein 5   4     20
 Calories 2   6     13
 Price (Rs) 60   100      


What combination of two food items will satisfy the daily requirement and entail the least cost? Formulate this as a LPP.


The minimum value of the objective function Z = ax + by in a linear programming problem always occurs at only one corner point of the feasible region


Determine the maximum value of Z = 3x + 4y if the feasible region (shaded) for a LPP is shown in Figure


In figure, the feasible region (shaded) for a LPP is shown. Determine the maximum and minimum value of Z = x + 2y.


Refer to question 13. Solve the linear programming problem and determine the maximum profit to the manufacturer


A manufacturer produces two Models of bikes-Model X and Model Y. Model X takes a 6 man-hours to make per unit, while Model Y takes 10 man-hours per unit. There is a total of 450 man-hour available per week. Handling and Marketing costs are Rs 2000 and Rs 1000 per unit for Models X and Y respectively. The total funds available for these purposes are Rs 80,000 per week. Profits per unit for Models X and Y are Rs 1000 and Rs 500, respectively. How many bikes of each model should the manufacturer produce so as to yield a maximum profit? Find the maximum profit.


A company makes 3 model of calculators: A, B and C at factory I and factory II. The company has orders for at least 6400 calculators of model A, 4000 calculator of model B and 4800 calculator of model C. At factory I, 50 calculators of model A, 50 of model B and 30 of model C are made every day; at factory II, 40 calculators of model A, 20 of model B and 40 of model C are made everyday. It costs Rs 12000 and Rs 15000 each day to operate factory I and II, respectively. Find the number of days each factory should operate to minimise the operating costs and still meet the demand.


The feasible solution for a LPP is shown in Figure. Let Z = 3x – 4y be the objective function. Minimum of Z occurs at ______.


Refer to Question 27. Maximum of Z occurs at ______.


In a LPP, the objective function is always ______.


If the feasible region for a LPP is ______ then the optimal value of the objective function Z = ax + by may or may not exist.


A feasible region of a system of linear inequalities is said to be ______ if it can be enclosed within a circle.


In a LPP, the maximum value of the objective function Z = ax + by is always finite.


Based on the given shaded region as the feasible region in the graph, at which point(s) is the objective function Z = 3x + 9y maximum?


In the given graph, the feasible region for an LPP is shaded. The objective function Z = 2x – 3y will be minimum at:


Z = 7x + y, subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0. The minimum value of Z occurs at ____________.


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. If M and m respectively be the largest and smallest values at corner points then ____________.


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. Let M and m respectively be the largest and smallest values at corner points. In case feasible region is unbounded, M is the maximum value of the objective function if ____________.


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. Let M and m respectively be the largest and smallest values at corner points. In case the feasible region is unbounded, m is the minimum value of the objective function.


If two corner points of the feasible region are both optimal solutions of the same type, i.e., both produce the same maximum or minimum.


The feasible region for an LPP is shown shaded in the following figure. Minimum of Z = 4x + 3y occurs at the point.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×