English

Solve the following Linear Programming Problems graphically: Minimise Z = x + 2y subject to 2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0. - Mathematics

Advertisements
Advertisements

Questions

Solve the following Linear Programming Problems graphically:

Minimise Z = x + 2y

subject to 2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0.

Consider the following Linear Programming Problem:

Minimise Z = x + 2y

Subject to 2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0.

Show graphically that the minimum of Z occurs at more than two points.

Graph

Solution 1

The system of constraints is:

2x + y ≥ 3  ....(i)

x + 2y ≥ 6  ....(ii)

and x ≥ 0, y ≥ 0  ...(iii)

Let l1 : 2x + y = 3

l2 : x + 2y = 6

The shaded region in the figure is the feasible region determined by the system of constraints (i) to (iii).

     

It is observed that the feasible region is unbounded.

The coordinates of B and C are (0, 3) and (6, 0), respectively.

Applying the Corner Point Method, we have

Corner point Corresponding values of Z
(6, 0) 6
(0, 3) 6

Since the region is unbounded, we need to check whether 6 is the minimum value or not. To decide this we graph the inequality x + 2y < 6.

Now, in the graph we observe 6 does not have points in common with the feasible region. So, 6 is the minimum value.

Hence Zmin = 6 at all points on the line segment joining the points (6, 0) and (0, 3).

shaalaa.com

Solution 2

The feasible region determined by the constraints 2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0 is as shown.

The corner points of the unbounded feasible region are A(6, 0) and B(0, 3).

The values of Z at these corner points are as follows:

Corner point Value of the objective function Z = x + 2y
A(6, 0) 6
B(0, 3) 6

We observe the region x + 2y < 6 has no points in common with the unbounded feasible region. Hence the minimum value of z = 6.

It can be seen that the value of Z at points A and B is the same. If we take any other point on the line x + 2y = 6, such as (2, 2) on line x + 2y = 6, then Z = 6.

Thus, the minimum value of Z occurs for more than 2 points and is equal to 6.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Linear Programming - Exercise 12.1 [Page 514]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 12 Linear Programming
Exercise 12.1 | Q 6 | Page 514

RELATED QUESTIONS

A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per bag contains 3 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional elements A, 11.25 units of element B, and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?


To maintain his health a person must fulfil certain minimum daily requirements for several kinds of nutrients. Assuming that there are only three kinds of nutrients-calcium, protein and calories and the person's diet consists of only two food items, I and II, whose price and nutrient contents are shown in the table below:
 

  Food I
(per lb)
  Food II
(per lb)
    Minimum daily requirement
for the nutrient
 Calcium 10   5     20
Protein 5   4     20
 Calories 2   6     13
 Price (Rs) 60   100      


What combination of two food items will satisfy the daily requirement and entail the least cost? Formulate this as a LPP.


Determine the maximum value of Z = 3x + 4y if the feasible region (shaded) for a LPP is shown in Figure


Feasible region (shaded) for a LPP is shown in Figure. Maximise Z = 5x + 7y.


The feasible region for a LPP is shown in Figure. Find the minimum value of Z = 11x + 7y


The feasible region for a LPP is shown in figure. Evaluate Z = 4x + y at each of the corner points of this region. Find the minimum value of Z, if it exists.


In figure, the feasible region (shaded) for a LPP is shown. Determine the maximum and minimum value of Z = x + 2y.


Refer to question 13. Solve the linear programming problem and determine the maximum profit to the manufacturer


Refer to question 15. Determine the maximum distance that the man can travel.


Maximise Z = x + y subject to x + 4y ≤ 8, 2x + 3y ≤ 12, 3x + y ≤ 9, x ≥ 0, y ≥ 0.


A company makes 3 model of calculators: A, B and C at factory I and factory II. The company has orders for at least 6400 calculators of model A, 4000 calculator of model B and 4800 calculator of model C. At factory I, 50 calculators of model A, 50 of model B and 30 of model C are made every day; at factory II, 40 calculators of model A, 20 of model B and 40 of model C are made everyday. It costs Rs 12000 and Rs 15000 each day to operate factory I and II, respectively. Find the number of days each factory should operate to minimise the operating costs and still meet the demand.


The corner points of the feasible region determined by the system of linear constraints are (0, 0), (0, 40), (20, 40), (60, 20), (60, 0). The objective function is Z = 4x + 3y ______.

Compare the quantity in Column A and Column B

Column A Column B
Maximum of Z 325

Refer to Question 27. (Maximum value of Z + Minimum value of Z) is equal to ______.


Refer to Question 30. Minimum value of F is ______.


Refer to Question 32, Maximum of F – Minimum of F = ______.


In a LPP, the linear inequalities or restrictions on the variables are called ____________.


A feasible region of a system of linear inequalities is said to be ______ if it can be enclosed within a circle.


In a LPP, the maximum value of the objective function Z = ax + by is always finite.


In the given graph, the feasible region for an LPP is shaded. The objective function Z = 2x – 3y will be minimum at:


For an objective function Z = ax + by, where a, b > 0; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is:


Objective function of a linear programming problem is ____________.


The maximum value of the object function Z = 5x + 10 y subject to the constraints x + 2y ≤ 120, x + y ≥ 60, x - 2y ≥ 0, x ≥ 0, y ≥ 0 is ____________.


Z = 7x + y, subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0. The minimum value of Z occurs at ____________.


A linear programming problem is one that is concerned with ____________.


A maximum or a minimum may not exist for a linear programming problem if ____________.


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. Let M and m respectively be the largest and smallest values at corner points. In case feasible region is unbounded, M is the maximum value of the objective function if ____________.


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. Let M and m respectively be the largest and smallest values at corner points. In case the feasible region is unbounded, m is the minimum value of the objective function.


Z = 6x + 21 y, subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0. The minimum value of Z occurs at ____________.


Maximize Z = 10×1 + 25×2, subject to 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3, x1 + x2 ≤ 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×