English

Show that the minimum of Z occurs at more than two points. Maximise Z = x + y, subject to x – y ≤ –1, –x + y ≤ 0, x, y ≥ 0. - Mathematics

Advertisements
Advertisements

Question

Show that the minimum of Z occurs at more than two points.

Maximise Z = x + y, subject to x – y ≤ –1, –x + y ≤ 0, x, y ≥ 0.

Sum

Solution

The system of constraints is:

x - y ≤ -1                ....(i)

- x + y ≤ 0            ....(ii)

x, y ≥ 0              ....(iii)

Let l1 : x - y = -1

l2 : -x + y = 0

Clearly, there is no feasible region

[∵ There is no common region]

Hence, there is no maximum value of Z.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Linear Programming - Exercise 12.1 [Page 514]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 12 Linear Programming
Exercise 12.1 | Q 10 | Page 514

RELATED QUESTIONS

Solve the following Linear Programming Problems graphically:

Maximise Z = 3x + 4y

subject to the constraints : x + y ≤ 4, x ≥ 0, y ≥ 0.


Solve the following Linear Programming Problems graphically:

Maximise Z = 5x + 3y

subject to 3x + 5y ≤ 15, 5x + 2y ≤ 10, x ≥ 0, y ≥ 0


Show that the minimum of Z occurs at more than two points.

Maximise Z = – x + 2y, Subject to the constraints:

x ≥ 3, x + y ≥ 5, x + 2y ≥ 6, y ≥ 0.


A dietician wishes to mix together two kinds of food X and Y in such a way that the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and 8 units of vitamin C. The vitamin content of one kg food is given below:

Food Vitamin A Vitamin B Vitamin C
X 1 2 3
Y 2 2 1

One kg of food X costs Rs 16 and one kg of food Y costs Rs 20. Find the least cost of the mixture which will produce the required diet?

 


A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:

Type of toy Machines
I II III
A 12 18 6
B 6 0 9

Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is Rs 7.50 and that on each toy of type B is Rs 5, show that 15 toys of type A and 30 of type B should be manufactured in a day to get maximum profit.

 


An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made on each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to travel by economy class than by the executive class. Determine how many tickets of each type must be sold in order to maximize the profit for the airline. What is the maximum profit?


A small firm manufactures necklaces and bracelets. The total number of necklaces and bracelets that it can handle per day is at most 24. It takes one hour to make a bracelet and half an hour to make a necklace. The maximum number of hours available per day is 16. If the profit on a necklace is Rs 100 and that on a bracelet is Rs 300. Formulate on L.P.P. for finding how many of each should be produced daily to maximize the profit?

It is being given that at least one of each must be produced.


If the feasible region for a linear programming problem is bounded, then the objective function Z = ax + by has both a maximum and a minimum value on R.


Determine the maximum value of Z = 11x + 7y subject to the constraints : 2x + y ≤ 6, x ≤ 2, x ≥ 0, y ≥ 0.


Maximise Z = 3x + 4y, subject to the constraints: x + y ≤ 1, x ≥ 0, y ≥ 0


Maximise the function Z = 11x + 7y, subject to the constraints: x ≤ 3, y ≤ 2, x ≥ 0, y ≥ 0.


Minimise Z = 13x – 15y subject to the constraints: x + y ≤ 7, 2x – 3y + 6 ≥ 0, x ≥ 0, y ≥ 0


Feasible region (shaded) for a LPP is shown in Figure. Maximise Z = 5x + 7y.


In figure, the feasible region (shaded) for a LPP is shown. Determine the maximum and minimum value of Z = x + 2y.


Refer to quastion 12. What will be the minimum cost?


Refer to question 13. Solve the linear programming problem and determine the maximum profit to the manufacturer


Refer to question 15. Determine the maximum distance that the man can travel.


Maximise Z = x + y subject to x + 4y ≤ 8, 2x + 3y ≤ 12, 3x + y ≤ 9, x ≥ 0, y ≥ 0.


A manufacturer produces two Models of bikes-Model X and Model Y. Model X takes a 6 man-hours to make per unit, while Model Y takes 10 man-hours per unit. There is a total of 450 man-hour available per week. Handling and Marketing costs are Rs 2000 and Rs 1000 per unit for Models X and Y respectively. The total funds available for these purposes are Rs 80,000 per week. Profits per unit for Models X and Y are Rs 1000 and Rs 500, respectively. How many bikes of each model should the manufacturer produce so as to yield a maximum profit? Find the maximum profit.


Refer to Question 27. (Maximum value of Z + Minimum value of Z) is equal to ______.


Corner points of the feasible region for an LPP are (0, 2), (3, 0), (6, 0), (6, 8) and (0, 5). Let F = 4x + 6y be the objective function. The Minimum value of F occurs at  ______.


Refer to Question 32, Maximum of F – Minimum of F = ______.


In a LPP, the linear inequalities or restrictions on the variables are called ____________.


In a LPP if the objective function Z = ax + by has the same maximum value on two corner points of the feasible region, then every point on the line segment joining these two points give the same ______ value.


If the feasible region for a LPP is unbounded, maximum or minimum of the objective function Z = ax + by may or may not exist.


Based on the given shaded region as the feasible region in the graph, at which point(s) is the objective function Z = 3x + 9y maximum?


For an objective function Z = ax + by, where a, b > 0; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is:


Z = 7x + y, subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0. The minimum value of Z occurs at ____________.


In linear programming, optimal solution ____________.


A maximum or a minimum may not exist for a linear programming problem if ____________.


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. If M and m respectively be the largest and smallest values at corner points then ____________.


In Corner point method for solving a linear programming problem, one finds the feasible region of the linear programming problem, determines its corner points, and evaluates the objective function Z = ax + by at each corner point. Let M and m respectively be the largest and smallest values at corner points. In case feasible region is unbounded, M is the maximum value of the objective function if ____________.


If two corner points of the feasible region are both optimal solutions of the same type, i.e., both produce the same maximum or minimum.


In a LPP, the objective function is always ____________.


Maximize Z = 10 x1 + 25 x2, subject to 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3, x1 + x2 ≤ 5.


The feasible region for an LPP is shown shaded in the figure. Let Z = 3x - 4y be the objective function. Minimum of Z occurs at ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×