हिंदी

Refer to Question 32, Maximum of F – Minimum of F = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Refer to Question 32, Maximum of F – Minimum of F = ______.

विकल्प

  • 60

  • 48

  • 42

  • 18

MCQ
रिक्त स्थान भरें

उत्तर

Refer to Question 32, Maximum of F – Minimum of F = 60.

Explanation:

Maximum value of F – Minimum value of F

= 72 – 12

= 60.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Linear Programming - Exercise [पृष्ठ २५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 12 Linear Programming
Exercise | Q 33 | पृष्ठ २५६

संबंधित प्रश्न

Solve the following Linear Programming Problems graphically:

Maximise Z = 3x + 4y

subject to the constraints : x + y ≤ 4, x ≥ 0, y ≥ 0.


Solve the following Linear Programming Problems graphically:

Minimise Z = 3x + 5y

such that x + 3y ≥ 3, x + y ≥ 2, x, y ≥ 0.


Solve the following Linear Programming Problems graphically:

Maximise Z = 3x + 2y

subject to x + 2y ≤ 10, 3x + y ≤ 15, x, y ≥ 0.


Refer to Example 9. How many packets of each food should be used to maximize the amount of vitamin A in the diet? What is the maximum amount of vitamin A in the diet?


A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:

Type of toy Machines
I II III
A 12 18 6
B 6 0 9

Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is Rs 7.50 and that on each toy of type B is Rs 5, show that 15 toys of type A and 30 of type B should be manufactured in a day to get maximum profit.

 


An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made on each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to travel by economy class than by the executive class. Determine how many tickets of each type must be sold in order to maximize the profit for the airline. What is the maximum profit?


To maintain his health a person must fulfil certain minimum daily requirements for several kinds of nutrients. Assuming that there are only three kinds of nutrients-calcium, protein and calories and the person's diet consists of only two food items, I and II, whose price and nutrient contents are shown in the table below:
 

  Food I
(per lb)
  Food II
(per lb)
    Minimum daily requirement
for the nutrient
 Calcium 10   5     20
Protein 5   4     20
 Calories 2   6     13
 Price (Rs) 60   100      


What combination of two food items will satisfy the daily requirement and entail the least cost? Formulate this as a LPP.


Determine the maximum value of Z = 3x + 4y if the feasible region (shaded) for a LPP is shown in Figure


In figure, the feasible region (shaded) for a LPP is shown. Determine the maximum and minimum value of Z = x + 2y.


A man rides his motorcycle at the speed of 50 km/hour. He has to spend Rs 2 per km on petrol. If he rides it at a faster speed of 80 km/hour, the petrol cost increases to Rs 3 per km. He has atmost Rs 120 to spend on petrol and one hour’s time. He wishes to find the maximum distance that he can travel. Express this problem as a linear programming problem


Maximise Z = x + y subject to x + 4y ≤ 8, 2x + 3y ≤ 12, 3x + y ≤ 9, x ≥ 0, y ≥ 0.


A manufacturer produces two Models of bikes-Model X and Model Y. Model X takes a 6 man-hours to make per unit, while Model Y takes 10 man-hours per unit. There is a total of 450 man-hour available per week. Handling and Marketing costs are Rs 2000 and Rs 1000 per unit for Models X and Y respectively. The total funds available for these purposes are Rs 80,000 per week. Profits per unit for Models X and Y are Rs 1000 and Rs 500, respectively. How many bikes of each model should the manufacturer produce so as to yield a maximum profit? Find the maximum profit.


Refer to Question 27. Maximum of Z occurs at ______.


Refer to Question 27. (Maximum value of Z + Minimum value of Z) is equal to ______.


Refer to Question 30. Minimum value of F is ______.


If the feasible region for a LPP is unbounded, maximum or minimum of the objective function Z = ax + by may or may not exist.


In a LPP, the minimum value of the objective function Z = ax + by is always 0 if the origin is one of the corner point of the feasible region.


In a LPP, the maximum value of the objective function Z = ax + by is always finite.


In the given graph, the feasible region for an LPP is shaded. The objective function Z = 2x – 3y will be minimum at:


A linear programming problem is as follows:

Minimize Z = 30x + 50y

Subject to the constraints: 3x + 5y ≥ 15, 2x + 3y ≤ 18, x ≥ 0, y ≥ 0

In the feasible region, the minimum value of Z occurs at:


Objective function of a linear programming problem is ____________.


Z = 7x + y, subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0. The minimum value of Z occurs at ____________.


In linear programming, optimal solution ____________.


A maximum or a minimum may not exist for a linear programming problem if ____________.


Maximize Z = 3x + 5y, subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0.


Maximize Z = 6x + 4y, subject to x ≤ 2, x + y ≤ 3, -2x + y ≤ 1, x ≥ 0, y ≥ 0.


Maximize Z = 10 x1 + 25 x2, subject to 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3, x1 + x2 ≤ 5.


The feasible region for an LPP is shown shaded in the figure. Let Z = 3x - 4y be the objective function. Minimum of Z occurs at ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×