हिंदी

A Small Firm Manufactures Necklaces and Bracelets. the Total Number of Necklaces and Bracelets that It Can Handle per Day is at Most 24 Formulate on L.P.P. for Finding How Many of Each Should Be Produced Daily to Maximize the Profit? - Mathematics

Advertisements
Advertisements

प्रश्न

A small firm manufactures necklaces and bracelets. The total number of necklaces and bracelets that it can handle per day is at most 24. It takes one hour to make a bracelet and half an hour to make a necklace. The maximum number of hours available per day is 16. If the profit on a necklace is Rs 100 and that on a bracelet is Rs 300. Formulate on L.P.P. for finding how many of each should be produced daily to maximize the profit?

It is being given that at least one of each must be produced.

उत्तर

Let the number of necklaces manufacture be x,

and the number of bracelets manufacture be y.

since the total number of items are at most 24

`x + y <= 24`  .....(1)

Bracelets takes 1 hour to manufacture and necklaces takes half an hour to manufacture

x item takes x hour to manufacture and y items take y/2 hour to manufacture.

and maximum time available is 16 hours.

therefore

`x/2 + y <= 16` ....(2)

the profit on one necklace is Rs. 100 and the profit on one bracelet is Rs.300

Let the profit be Z. Now we wish to maximize the profit. So,

Max Z = 100x + 300y              ...(3)

So, `x + y <= 24`

`x/2 + y <= 16`

Max Z = 100x + 300y is the required L.P.P.

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Delhi Set 1

संबंधित प्रश्न

Solve the following Linear Programming Problems graphically:

Maximise Z = 3x + 2y

subject to x + 2y ≤ 10, 3x + y ≤ 15, x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Minimise and Maximise Z = x + 2y 

subject to x + 2y ≥ 100, 2x – y ≤ 0, 2x + y ≤ 200; x, y ≥ 0.


Show that the minimum of Z occurs at more than two points.

Maximise Z = – x + 2y, Subject to the constraints:

x ≥ 3, x + y ≥ 5, x + 2y ≥ 6, y ≥ 0.


A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per bag contains 3 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional elements A, 11.25 units of element B, and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?


The minimum value of the objective function Z = ax + by in a linear programming problem always occurs at only one corner point of the feasible region


Determine the maximum value of Z = 11x + 7y subject to the constraints : 2x + y ≤ 6, x ≤ 2, x ≥ 0, y ≥ 0.


Maximise the function Z = 11x + 7y, subject to the constraints: x ≤ 3, y ≤ 2, x ≥ 0, y ≥ 0.


Minimise Z = 13x – 15y subject to the constraints: x + y ≤ 7, 2x – 3y + 6 ≥ 0, x ≥ 0, y ≥ 0


In figure, the feasible region (shaded) for a LPP is shown. Determine the maximum and minimum value of Z = x + 2y.


A man rides his motorcycle at the speed of 50 km/hour. He has to spend Rs 2 per km on petrol. If he rides it at a faster speed of 80 km/hour, the petrol cost increases to Rs 3 per km. He has atmost Rs 120 to spend on petrol and one hour’s time. He wishes to find the maximum distance that he can travel. Express this problem as a linear programming problem


In order to supplement daily diet, a person wishes to take some X and some wishes Y tablets. The contents of iron, calcium and vitamins in X and Y (in milligrams per tablet) are given as below:

Tablets Iron Calcium Vitamin
X 6 3 2
Y 2 3 4

The person needs atleast 18 milligrams of iron, 21 milligrams of calcium and 16 milligrams of vitamin. The price of each tablet of X and Y is Rs 2 and Rs 1 respectively. How many tablets of each should the person take in order to satisfy the above requirement at the minimum cost?


The corner points of the feasible region determined by the system of linear constraints are (0, 0), (0, 40), (20, 40), (60, 20), (60, 0). The objective function is Z = 4x + 3y ______.

Compare the quantity in Column A and Column B

Column A Column B
Maximum of Z 325

The feasible solution for a LPP is shown in Figure. Let Z = 3x – 4y be the objective function. Minimum of Z occurs at ______.


The feasible region for an LPP is shown in the figure. Let F = 3x – 4y be the objective function. Maximum value of F is ______.


In a LPP if the objective function Z = ax + by has the same maximum value on two corner points of the feasible region, then every point on the line segment joining these two points give the same ______ value.


A feasible region of a system of linear inequalities is said to be ______ if it can be enclosed within a circle.


The feasible region for an LPP is always a ______ polygon.


If the feasible region for a LPP is unbounded, maximum or minimum of the objective function Z = ax + by may or may not exist.


Maximum value of the objective function Z = ax + by in a LPP always occurs at only one corner point of the feasible region.


In a LPP, the maximum value of the objective function Z = ax + by is always finite.


In a linear programming problem, the constraints on the decision variables x and y are x − 3y ≥ 0, y ≥ 0, 0 ≤ x ≤ 3. The feasible region:


Z = 7x + y, subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0. The minimum value of Z occurs at ____________.


In linear programming, optimal solution ____________.


In a LPP, the objective function is always ____________.


Maximize Z = 3x + 5y, subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0.


Maximize Z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.


Maximize Z = 6x + 4y, subject to x ≤ 2, x + y ≤ 3, -2x + y ≤ 1, x ≥ 0, y ≥ 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×