Advertisements
Advertisements
प्रश्न
सानिकाने 1 जाने. 2016 ला ठरवले, की त्या दिवशी ₹ 10, दुसऱ्या दिवशी ₹ 11, तिसऱ्या दिवशी ₹ 12 अशाप्रकारे बचत करत रहायचे, तर 31 डिसेंबर 2016 पर्यंत तिची एकूण बचत किती झाली?
उत्तर
1. 2016 मध्ये दर दिवशी सानिकाने केलेली बचत:
10, 11, 12,... ही क्रमिका अंकगणिती श्रेढी आहे.
∴ a = 10, d = 11 - 10 = 1,
n = 366 ...[∵ 2016 हे लीप वर्ष आहे.]
2. `"S"_"n" = "n"/2`[2a + (n - 1)d]
∴ `"S"_366 = 366/2`[2(10) + (366 - 1)1]
= 183(20 + 365 × 1)
= 183(20 + 365)
= 183 × 385
= 70455
∴ सानिकाची 31 डिसेंबर 2016 पर्यंतची एकूण बचत ₹ 70455 होईल.
APPEARS IN
संबंधित प्रश्न
एका नाट्यगृहात खुर्च्यांच्या एकूण 27 रांगा आहेत. पहिल्या रांगेत 20 खुर्च्या आहेत, दुसऱ्या 22 खुर्च्या तिसऱ्या रांगेत 24 खुर्च्या याप्रमाणे सर्व खुर्च्यांची मांडणी आहे, तर 15 व्या रांगेत एकूण किती खुर्च्या असतील आणि नाट्यगृहात एकूण किती खुर्च्या असतील?
कारगिल येथे एका आठवड्यातील सोमवार ते शनिवार या दिवसांच्या तापमानांची नोंद केली. त्या नोंदी अंकगणिती श्रेढीत आहेत असे आढळले. सोमवार व शनिवारच्या तापमानांची बेरीज मंगळवार व शनिवारच्या तापमानांच्या बेरजेपेक्षा 5° सेल्सिअसने जास्त आहे. जर बुधवारचे तापमान - 30° सेल्सिअस असेल, तर प्रत्येक दिवसाचे तापमान काढा.
अंकगणिती श्रेढीच्या m व्या पदाची m पट ही n व्या पदाच्या n पटीबरोबर असेल, तर त्याचे (m + n) वे पद शून्य असते हे दाखवा. (m ≠ n)
एका अंकगणिती श्रेढीत 37 पदे आहेत. सर्वांत मध्यावर असलेल्या तीन पदांची बेरीज 225 आहे आणि शेवटच्या तीन पदांची बेरीज 429 आहे, तर अंकगणिती श्रेढी लिहा.
5 ने भाग जाणाऱ्या दोन अंकी संख्या किती आहेत?
कृती: –5 ने भाग जाणाऱ्या दोन अंकी संख्या 10, 15, 20 ......... 95., ह्या आहेत.
d = 5 असल्याने दिलेली क्रमिका अंकगणिती श्रेढी आहे.
येथे, , a = 10, d = 5, tn = 95, n = ?
tn = a + (n - 1) `square`
`square` = 10 + (n – 1) × 5
`square` = (n –1) × 5
`square` = (n –1)
म्हणून, n = `square`
5 ने भाग जाणाऱ्या दोन अंकी संख्या `square` आहेत.
कल्पना दर महिन्याला ठरावीक रक्कम बचत करते. तिने पहिल्या महिन्यात 100रु., दुसऱ्या महिन्यात 150रु., तिसऱ्या महिन्यात 200रु. याप्रमाणे बचत केली, तर किती महिन्यात 1200रु. बचत होईल?
कृती: कल्पनाची मासिक बचत 100 रु., 150 रु., 200 रु. ......... 1200 रु. अशी आहे.
येथे d = 50 रु. आहे. म्हणून, दिलेली क्रमिका ही अंकगणिती श्रेढी आहे.
a = 100, d = 50, tn = `square`, n = ?
tn = a + (n – 1) `square`
`square` =100 + (n – 1) × 50
`square/50` = n - 1
n = `square`
म्हणून, 1200 रु. बचत `square` महिन्यात होईल.
मेरीला दरमहा 15000 रु. पगाराची नोकरी मिळाली, जर तिला दरमहा 100 रु. पगारवाढ मिळत असेल, तर 20 महिन्यांनंतर मेरीचा पगार किती होईल?
3900 रुपये 12 हप्त्याने असे परत केले, की प्रत्येक हप्ता हा आधीच्या हप्त्यापेक्षा 10 रुपये जास्त होता, तर पहिला व शेवटचा हप्ता किती रुपयांचा होता?
एका व्यापाराने 1000 रु. कर्जाऊ घेतले व त्यावरील 140 रु. व्याज व मुद्दल 12 हप्त्यात परत करण्याचे कबूल केले. प्रत्येक हप्त्याची रक्कम अगोदरच्या हप्त्यापेक्षा 10 रु. कमी आहे, तर त्याने पहिल्या हप्त्यात किती रक्कम परतफेड केली?
कविताने एका महिला बचत गटात महिन्याच्या पहिल्या दिवशी 20 रुपये, दुसऱ्या दिवशी 40 रुपये व तिसऱ्या दिवशी 60 रुपये अशा प्रकारे पैसे गुंतविल्यास तिची फेब्रुवारी 2020 या महिन्याची एकूण बचत किती?