Advertisements
Advertisements
Question
सानिकाने 1 जाने. 2016 ला ठरवले, की त्या दिवशी ₹ 10, दुसऱ्या दिवशी ₹ 11, तिसऱ्या दिवशी ₹ 12 अशाप्रकारे बचत करत रहायचे, तर 31 डिसेंबर 2016 पर्यंत तिची एकूण बचत किती झाली?
Solution
1. 2016 मध्ये दर दिवशी सानिकाने केलेली बचत:
10, 11, 12,... ही क्रमिका अंकगणिती श्रेढी आहे.
∴ a = 10, d = 11 - 10 = 1,
n = 366 ...[∵ 2016 हे लीप वर्ष आहे.]
2. `"S"_"n" = "n"/2`[2a + (n - 1)d]
∴ `"S"_366 = 366/2`[2(10) + (366 - 1)1]
= 183(20 + 365 × 1)
= 183(20 + 365)
= 183 × 385
= 70455
∴ सानिकाची 31 डिसेंबर 2016 पर्यंतची एकूण बचत ₹ 70455 होईल.
APPEARS IN
RELATED QUESTIONS
कारगिल येथे एका आठवड्यातील सोमवार ते शनिवार या दिवसांच्या तापमानांची नोंद केली. त्या नोंदी अंकगणिती श्रेढीत आहेत असे आढळले. सोमवार व शनिवारच्या तापमानांची बेरीज मंगळवार व शनिवारच्या तापमानांच्या बेरजेपेक्षा 5° सेल्सिअसने जास्त आहे. जर बुधवारचे तापमान - 30° सेल्सिअस असेल, तर प्रत्येक दिवसाचे तापमान काढा.
₹ 1000 ही रक्कम 10 % सरळव्याज दराने गुंतवली, तर प्रत्येक वर्षाच्या शेवटी मिळणाऱ्या व्याजाची रक्कम अंकगणितीय श्रेढी होईल का हे तपासा. ती अंकगणितीय श्रेढी होत असेल, तर 20 वर्षांनंतर मिळणाऱ्या व्याजाची रक्कम काढा. त्यासाठी खालील कृती पूर्ण करा.
सरळव्याज = `("P" xx "R" xx "N")/100`
1 वर्षानंतर मिळणारे सरळव्याज = `(1000 xx 10 xx 1)/100 = square`
2 वर्षानंतर मिळणारे सरळव्याज = `(1000 xx 10 xx 2)/100 = square`
3 वर्षानंतर मिळणारे सरळव्याज = `(square xx square xx square)/100` = 300
अशाप्रकारे 4, 5, 6 वर्षांनंतर मिळणारे सरळव्याज अनुक्रमे 400, `square`, `square` असेल.
या संख्येवरून d = `square`, आणि a = `square`
20 वर्षांनंतर मिळणारे सरळव्याज
tn = a + (n - 1)d
t20 = `square` + (20 - 1)`square`
t20 = `square`
20 वर्षांनंतर मिळणारे एकूण व्याज = `square`
अंकगणिती श्रेढीच्या m व्या पदाची m पट ही n व्या पदाच्या n पटीबरोबर असेल, तर त्याचे (m + n) वे पद शून्य असते हे दाखवा. (m ≠ n)
207 या संख्येचे तीन भाग असे करा, की त्या संख्या अंकगणिती श्रेढीत असतील व लहान दोन भागांचा गुणाकार 4623 असेल.
5 ने भाग जाणाऱ्या दोन अंकी संख्या किती आहेत?
कृती: –5 ने भाग जाणाऱ्या दोन अंकी संख्या 10, 15, 20 ......... 95., ह्या आहेत.
d = 5 असल्याने दिलेली क्रमिका अंकगणिती श्रेढी आहे.
येथे, , a = 10, d = 5, tn = 95, n = ?
tn = a + (n - 1) `square`
`square` = 10 + (n – 1) × 5
`square` = (n –1) × 5
`square` = (n –1)
म्हणून, n = `square`
5 ने भाग जाणाऱ्या दोन अंकी संख्या `square` आहेत.
मेरीला दरमहा 15000 रु. पगाराची नोकरी मिळाली, जर तिला दरमहा 100 रु. पगारवाढ मिळत असेल, तर 20 महिन्यांनंतर मेरीचा पगार किती होईल?
शर्वरीने एका महिला बचत गटात महिन्याच्या पहिल्या दिवशी 2 रु., दुसऱ्या दिवशी ४ रु., व तिसऱ्या दिवशी ६ रु. अशा तर्हेने पैसे गुंतवल्यास तिची फेब्रुवारी २०१० या महिन्याची एकूण बचत किती?
3900 रुपये 12 हप्त्याने असे परत केले, की प्रत्येक हप्ता हा आधीच्या हप्त्यापेक्षा 10 रुपये जास्त होता, तर पहिला व शेवटचा हप्ता किती रुपयांचा होता?
एका व्यापाराने 1000 रु. कर्जाऊ घेतले व त्यावरील 140 रु. व्याज व मुद्दल 12 हप्त्यात परत करण्याचे कबूल केले. प्रत्येक हप्त्याची रक्कम अगोदरच्या हप्त्यापेक्षा 10 रु. कमी आहे, तर त्याने पहिल्या हप्त्यात किती रक्कम परतफेड केली?
कविताने एका महिला बचत गटात महिन्याच्या पहिल्या दिवशी 20 रुपये, दुसऱ्या दिवशी 40 रुपये व तिसऱ्या दिवशी 60 रुपये अशा प्रकारे पैसे गुंतविल्यास तिची फेब्रुवारी 2020 या महिन्याची एकूण बचत किती?