Advertisements
Advertisements
Question
शर्वरीने एका महिला बचत गटात महिन्याच्या पहिल्या दिवशी 2 रु., दुसऱ्या दिवशी ४ रु., व तिसऱ्या दिवशी ६ रु. अशा तर्हेने पैसे गुंतवल्यास तिची फेब्रुवारी २०१० या महिन्याची एकूण बचत किती?
Solution
फेब्रुवारी 2010 महिन्यात शर्वरीने गुंतवलेली रक्कम पुढीलप्रमाणे: 2, 4, 6,……
वरील क्रमिका अंकगणिती श्रेढी आहे.
∴ a = 2, d = 4 – 2 = 2
फेब्रुवारी 2010 मधील दिवसांची संख्या
n = 28
आता, Sn = `"n"/2`[2a + (n – 1)d]
∴ S28 = `28/2`[2(2) + (28 – 1)(2)]
= 14[4 + 27(2)]
= 14(4 + 54)
= 14(58)
= 812
∴ शर्वरीची फेब्रुवारी 2010 या महिन्याची एकूण बचत 812 रुपये आहे.
APPEARS IN
RELATED QUESTIONS
सानिकाने 1 जाने. 2016 ला ठरवले, की त्या दिवशी ₹ 10, दुसऱ्या दिवशी ₹ 11, तिसऱ्या दिवशी ₹ 12 अशाप्रकारे बचत करत रहायचे, तर 31 डिसेंबर 2016 पर्यंत तिची एकूण बचत किती झाली?
सचिनने राष्ट्रीय बचत प्रमाणपत्रांमध्ये पहिल्या वर्षी ₹ 5000, दुसऱ्या वर्षी ₹ 7000, तिसऱ्या वर्षी ₹ 9000 याप्रमाणे रक्कम गुंतवली, तर त्याची 12 वर्षांतील एकूण गुंतवणूक किती?
एका नाट्यगृहात खुर्च्यांच्या एकूण 27 रांगा आहेत. पहिल्या रांगेत 20 खुर्च्या आहेत, दुसऱ्या 22 खुर्च्या तिसऱ्या रांगेत 24 खुर्च्या याप्रमाणे सर्व खुर्च्यांची मांडणी आहे, तर 15 व्या रांगेत एकूण किती खुर्च्या असतील आणि नाट्यगृहात एकूण किती खुर्च्या असतील?
एका गृहस्थाने ₹ 8000 कर्जाऊ घेतले आणि त्यावर ₹ 1360 व्याज देण्याचे कबूल केले. प्रत्येक हप्ता आधीच्या हप्त्यापेक्षा ₹ 40 कमी देऊन सर्व रक्कम 12 मासिक हप्त्यांत भरली, तर त्याने दिलेला पहिला व शेवटचा हप्ता किती होता?
कारगिल येथे एका आठवड्यातील सोमवार ते शनिवार या दिवसांच्या तापमानांची नोंद केली. त्या नोंदी अंकगणिती श्रेढीत आहेत असे आढळले. सोमवार व शनिवारच्या तापमानांची बेरीज मंगळवार व शनिवारच्या तापमानांच्या बेरजेपेक्षा 5° सेल्सिअसने जास्त आहे. जर बुधवारचे तापमान - 30° सेल्सिअस असेल, तर प्रत्येक दिवसाचे तापमान काढा.
₹ 1000 ही रक्कम 10 % सरळव्याज दराने गुंतवली, तर प्रत्येक वर्षाच्या शेवटी मिळणाऱ्या व्याजाची रक्कम अंकगणितीय श्रेढी होईल का हे तपासा. ती अंकगणितीय श्रेढी होत असेल, तर 20 वर्षांनंतर मिळणाऱ्या व्याजाची रक्कम काढा. त्यासाठी खालील कृती पूर्ण करा.
सरळव्याज = `("P" xx "R" xx "N")/100`
1 वर्षानंतर मिळणारे सरळव्याज = `(1000 xx 10 xx 1)/100 = square`
2 वर्षानंतर मिळणारे सरळव्याज = `(1000 xx 10 xx 2)/100 = square`
3 वर्षानंतर मिळणारे सरळव्याज = `(square xx square xx square)/100` = 300
अशाप्रकारे 4, 5, 6 वर्षांनंतर मिळणारे सरळव्याज अनुक्रमे 400, `square`, `square` असेल.
या संख्येवरून d = `square`, आणि a = `square`
20 वर्षांनंतर मिळणारे सरळव्याज
tn = a + (n - 1)d
t20 = `square` + (20 - 1)`square`
t20 = `square`
20 वर्षांनंतर मिळणारे एकूण व्याज = `square`
अंकगणिती श्रेढीच्या m व्या पदाची m पट ही n व्या पदाच्या n पटीबरोबर असेल, तर त्याचे (m + n) वे पद शून्य असते हे दाखवा. (m ≠ n)
1 ते n नैसर्गिक संख्यांची बेरीज 36 आहे, तर n ची किंमत काढा.
कल्पना दर महिन्याला ठरावीक रक्कम बचत करते. तिने पहिल्या महिन्यात 100रु., दुसऱ्या महिन्यात 150रु., तिसऱ्या महिन्यात 200रु. याप्रमाणे बचत केली, तर किती महिन्यात 1200रु. बचत होईल?
कृती: कल्पनाची मासिक बचत 100 रु., 150 रु., 200 रु. ......... 1200 रु. अशी आहे.
येथे d = 50 रु. आहे. म्हणून, दिलेली क्रमिका ही अंकगणिती श्रेढी आहे.
a = 100, d = 50, tn = `square`, n = ?
tn = a + (n – 1) `square`
`square` =100 + (n – 1) × 50
`square/50` = n - 1
n = `square`
म्हणून, 1200 रु. बचत `square` महिन्यात होईल.
3900 रुपये 12 हप्त्याने असे परत केले, की प्रत्येक हप्ता हा आधीच्या हप्त्यापेक्षा 10 रुपये जास्त होता, तर पहिला व शेवटचा हप्ता किती रुपयांचा होता?