Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि समुच्चय A = {x ∈ Z : 0 ≤ x ≤ 12}, में दिए गए निम्नलिखित संबंध R में से प्रत्येक एक तुल्यता संबंध है:
R = {(a, b) : |a - b|, 4 का एक गुणज है}, प्रत्येक दशा में 1 से संबंधित अवयवों को ज्ञात कीजिए।
उत्तर
A = {x ∈ Z : 0 ≤ x ≤ 12} = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
R = {(a, b) : |a - b|, 4 का एक गुणज है}
(i) स्वतुल्य:
अवयव a ∈ A के लिए, (a, a) ∈ R क्योंकि |a - a| = 0, 4 का एक गुणज है।
∴ R स्वतुल्य है।
(ii )सममित:
अब, माना (a, b) ∈ R
⇒ |a - b|, 4 का एक गुणज है।
⇒ |-(a - b)| = |b - a|, 4 का एक गुणज है |
⇒ (b, a) ∈ R
(a, b) ∈ R
∴ R सममित है।
(iii) संक्रामक:
माना (a, b) और (b, c) ∈ R.
⇒ |a - b|, 4 का गुणज है और |b - c|, 4 का एक गुणज है।
⇒ (a - c) = (a - b) + (b - c), 4 का गुणज है।
=>|a - c|= |a - b + b - c| = |a - b|+ |b - c|
=> (a - c) = (a - b) + (b - c) 4 का गुणज है
=> (a, c ) R में
[∴|a - b| 4 और |b - c| का गुणज है 4 का गुणज है]
∴ R संक्रामक है।
अंत:, R एक तुल्यता सबंध है।
1 से संबंधित अवयव इस प्रकार है: {1, 5, 9} क्योंकि
|1 - 1| = 0 जो की 4 का गुणज है।
|5 - 1| = 4 जो की 4 का गुणज है।
|9 - 1| = 8 जो की 4 का गुणज है।
APPEARS IN
संबंधित प्रश्न
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
समुच्चय A = {1, 2, 3, ..., 13, 14} में संबंध R, इस प्रकार परिभाषित है कि
R = {(x, y) : 3x - y = 0}
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
समस्त पूर्णांकों के समुच्चय Z में R = {(x, y) : x - y एक पूर्णांक है} द्वारा परिभाषित संबंध R.
सिद्ध कीजिए कि वास्तविक संख्याओं के समुच्चय R में R = {(a, b) : a ≤ b2}, द्वारा परिभाषित संबंध R, न तो स्वतुल्य है, न सममित है और न ही संक्रामक है।
सिद्ध कीजिए कि R में R = {(a, b) : a ≤ b}, द्वारा परिभाषित संबंध R स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।
सिद्ध कीजिए कि किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों के समुच्चय A में R = {(x, y) : x तथा y में पेजों की संख्या समान है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है।
ऐसे संबंध का उदाहरण दीजिए, जो सममित हो परंतु न तो स्वतुल्य हो और न संक्रामक हो।
ऐसे संबंध का उदाहरण दीजिए, जो संक्रामक हो परंतु न तो स्वतुल्य हो और न सममित हो।
सिद्ध कीजिए कि समुच्चय A = {x ∈ Z : 0 ≤ x ≤ 12}, में दिए गए निम्नलिखित संबंध R में से प्रत्येक एक तुल्यता संबंध है:
R = {(a, b) : a = b}, प्रत्येक दशा में 1 से संबंधित अवयवों को ज्ञात कीजिए।
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R.
R = {(x, y) : x तथा y एक ही मोहल्ले में रहते हैं}
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R.
R = {(x, y) : x, y से ठीक-ठीक 7 सेमी लंबा है}
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R.
R = {(x, y) : x, y की पत्नी है}
निर्धारित कीजिए कि क्या निम्नलिखित संबंध स्वतुल्य, सममित और संक्रामक हैं:
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध R.
R = {(x, y) : x, y के पिता हैं}
ऐसे संबंध का उदाहरण दीजिए, जो स्वतुल्य तथा सममित हो किंतु संक्रामक न हो।
सिद्ध कीजिए कि किसी समतल में स्थित बिंदुओं के समुच्चय में R = {(P, Q) : बिंदु P की मूल बिंदु से दूरी, बिंदु Q की मूल बिंदु से दूरी के समान है} द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है। पुनः सिद्ध कीजिए कि बिंदु P ≠ (0, 0) से संबंधित सभी बिंदुओं का समुच्चय P से होकर जाने वाले एक ऐसे वृत्त को निरूपित करता है, जिसका केंद्र मूल बिंदु पर है।
सिद्ध कीजिए कि समस्त त्रिभुजों के समुच्चय A में, R = {(T1 T2) : T1 T2, के समरूप है} द्वारा परिभाषित संबंध R एक तुल्यता संबंध है। भुजाओं 3, 4, 5 वाले समकोण त्रिभुज T1 भुजाओं 5, 12, 13 वाले समकोण त्रिभुज T2, तथा भुजाओं 6, 8, 10 वाले समकोण त्रिभुज T3 पर विचार कीजिए। T1 T2 और T3 में से कौन से त्रिभुज परस्पर संबंधित हैं?
मान लीजिए कि समुच्चय {(1, 2, 3, 4)} में, R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)} द्वारा परिभाषित संबंध R है। निम्नलिखित में से सही उत्तर चुनिए।
मान लीजिए कि समुच्चय N में, R = {(a, b) : a = b - 2, b > 6} द्वारा प्रदत्त संबंध R है। निम्नलिखित में से सही उत्तर चुनिए:
एक अरिक्त समुच्चय X दिया हुआ है। P(X) जो कि X के समस्त उपसमुच्चयों का समुच्चय है, पर विचार कीजिए। निम्नलिखित तरह से P(X) में एक संबंध R परिभाषित कीजिए: P(X) में उपसमुच्चयों A, B के लिए, ARB, यदि और केवल यदि A ⊂ B है। क्या R, P(X) में एक तुल्यता संबंध है? अपने उत्तर का औचित्य भी लिखिए ।
यदि A = {1, 2, 3} हो तो अवयव (1, 2) वाले तुल्यता संबंधों की संख्या है।