हिंदी

सिद्ध कीजिए कि वृत्त के परिगत बनी चतुर्भुज की आमने साम्ने की भुजाएँ केन्द्र पर संपूरक कोण अंतरित करती हैं। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सिद्ध कीजिए कि वृत्त के परिगत बनी चतुर्भुज की आमने साम्ने की भुजाएँ केन्द्र पर संपूरक कोण अंतरित करती हैं।

योग

उत्तर

मान लीजिए ABCD एक चतुर्भुज है जो O पर केन्द्रित एक वृत्त के परिगत इस प्रकार है कि वह वृत्त को बिंदु P, Q, R, S पर स्पर्श करता है। आइए हम चतुर्भुज ABCD के शीर्षों को वृत्त के केंद्र से मिलाइए। ΔOAP और ΔOAS पर विचार करें,

AP = AS (एक ही बिंदु से स्पर्श रेखाएं)

OP = OS           ....(एक ही वृत्त की त्रिज्या)

OA = OA              ....(सामान्य पक्ष)

ΔOAP  ≅ ΔOAS 

इसलिए, A ↔ A, P ↔ S, O ↔ O

और इस प्रकार, ∠POA = ∠AOS

∠1 = ∠8

इसी तरह,

∠2 = ∠3

∠4 = ∠5

∠6 = ∠7

∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 + ∠8 = 360º

(∠1 + ∠8) + (∠2 + ∠3) + (∠4 + ∠5) + (∠6 + ∠7) = 360º

2∠1 + 2∠2 + 2∠5 + 2∠6 = 360º

2(∠1 + ∠2) + 2(∠5 + ∠6) = 360º

(∠1 + ∠2) + (∠5 + ∠6) = 180º

∠AOB + ∠COD = 180º

इसी प्रकार, हम सिद्ध कर सकते हैं कि ∠BOC + ∠DOA = 180º

अत: वृत्त के परिगत एक चतुर्भुज की सम्मुख भुजाएँ वृत्त के केंद्र पर संपूरक कोण अंतरित करती हैं।

shaalaa.com
एक बिंदु से एक वृत्त पर स्पर्श रेखाओं की संख्या
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: वृत्त - प्रश्नावली 10.2 [पृष्ठ २३७]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
अध्याय 10 वृत्त
प्रश्नावली 10.2 | Q 13. | पृष्ठ २३७

संबंधित प्रश्न

एक बिन्दु Q से एक वृत्त की स्पर्श रेखा की लम्बाई 24 cm तथा Q की केन्द्र से दूरी 25 cm है। वृत्त की त्रिज्या है।


आकृति में, यदि TP, TQ केन्द्र O वाले किसी वृत्त पर दो स्पर्श रेखाएँ इस प्रकार हैं कि ∠POQ = 1100, तो ∠PTQ बराबर है ______.


यदि एक बिन्दु P से O केन्द्र वाले किसी वृत्त पर PA, PB स्पर्श रेखाएँ परस्पर 800 के कोण पर झुकी हों, तो ∠POA बराबर है:


सिद्ध कीजिए कि किसी वृत्त के किसी व्यास के सिरों पर खींची गई स्पर्श रेखाएँ समांतर होती हैं।


सिद्ध कीजिए कि स्पर्श बिन्दु से स्पर्श रेखा पर खींचा गया लम्ब वृत्त के केन्द्र से होकर जाता है।


एक बिन्दु A से, जो एक वृत्त के केन्द्र से 5 cm की दूरी पर है, वृत्त पर स्पर्श रेखा की लम्बाई 4 cm है। वृत्त की त्रिज्या ज्ञात कीजिए।


सिद्ध कीजिए कि किसी बाह्य बिंदु से वृत्त पर खींची गई दो स्पर्श रेखाओं के बीच का कोण, केंद्र से संपर्क बिंदुओं को मिलाने वाले रेखाखंडों द्वारा अंतरित कोण का संपूरक होता है।


यदि किसी बिंदु P से त्रिज्या a और केंद्र O वाले वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण 90° है, तो OP = `asqrt(2)` होता है।


यदि केंद्र O वाले एक वृत्त के एक बाहरी बिंदु B से दो स्पर्श रेखाएँ BC और BD इस प्रकार खींची जाएँ कि ∠DBC = 120° है, तो सिद्ध कीजिए कि BC + BD = BO है, अर्थात् BO = 2BC है। 


आकृति में, AB और CD असमान त्रिज्याओं वाले दो वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ हैं। सिद्ध कीजिए कि AB = CD हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×