हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

समलंब चौकोन ABCD मध्ये, रेख AB || रेख DC रेख BD ⊥ रेख AD, रेख AC ⊥ रेख BC, जर AD = 15, BC = 15 आणि AB = 25 असेल तर A(□ABCD) किती? - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

समलंब चौकोन ABCD मध्ये, रेख AB || रेख DC रेख BD ⊥ रेख AD, रेख AC ⊥ रेख BC, जर AD = 15, BC = 15 आणि AB = 25 असेल तर A(`square`ABCD) किती?

योग

उत्तर

रचना: रेख DE ⊥ रेख AB, A-E-B आणि रेख CF ⊥ रेख AB, A-F-B काढा.

उकल: 

ΔACB मध्ये, ∠ACB = 90°  ....[पक्ष]

∴ AB2 = AC2 + BC....[पायथागोरसचे प्रमेय]

∴ 252 = AC2 + 152

∴ AC2 = 625 – 225

= 400

∴ AC = `sqrt(400)`  ....[दोन्ही बाजूंचे वर्गमूळ घेऊन]

= 20 एकक

आता, A(ΔABC) = `1/2 xx "BC" xx "AC"`  ....(i)

तसेच, A(ΔABC) = `1/2 xx "AB" xx "CF"`  ....(ii)

∴ `1/2 xx "BC" xx "AC"` = `1/2 xx "AB" xx "CF"` ...[(i) व (ii) वरून]

∴ BC × AC = AB × CF

∴ 15 × 20 = 25 × CF

∴ CF = `(15 xx 20)/25` = 12 एकक

ΔCFB मध्ये, ∠CFB = 90°  ......[रचना]

∴ BC2 = CF2 + FB.....[पायथागोरसचे प्रमेय]

∴ 152 = 122 + FB2

∴ FB2 = 225 – 144

∴ FB2 = 81

∴ FB = `sqrt(81)` ....[दोन्ही बाजूंचे वर्गमूळ घेऊन]

= 9 एकक

त्याचप्रमाणे, आपण सिद्ध करू शकतो, की AE = 9 एकक

आता, AB = AE + EF + FB  ...[A-E-F, E-F-B]

∴ 25 = 9 + EF + 9

∴ EF = 25 – 18 = 7 एकक

`square`CDEF मध्ये,

रेख EF || रेख DC  ....[पक्ष, A-E-F, E-F-B]

रेख ED || रेख FC ....[एकाच रेषेवरील लंब रेषा एकमेकींना समांतर असतात.]

∴ `square`CDEF हा समांतरभुज चौकोन आहे.

∴ DC = EF = 7 एकक ....[समांतरभुज चौकोनाच्या समोरासमोरील बाजू]

समलंब चौकोनाचे क्षेत्रफळ = `1/2` × (समांतर बाजूंच्या × उंची लांबींची बेरीज)

A(`square`ABCD) = `1/2` × CF × (AB + CD)

= `1/2 xx 12 xx (25 + 7)`

= `1/2 xx 12 xx 32`

∴ A(`square`ABCD) = 192 चौ. एकक

shaalaa.com
पायथागोरसचे प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: पायथागोरसचे प्रमेय - संकीर्ण प्रश्नसंग्रह 2 [पृष्ठ ४६]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Marathi] 10 Standard SSC Maharashtra State Board
अध्याय 2 पायथागोरसचे प्रमेय
संकीर्ण प्रश्नसंग्रह 2 | Q 15. | पृष्ठ ४६

संबंधित प्रश्न

एका चौरसाचा कर्ण 10 सेमी आहे तर त्याच्या बाजूची लांबी व परिमिती काढा.


ΔABC मध्ये ∠BAC = 90°, रेख BL व रेख CM या ΔABC च्या मध्यगा आहेत, तर सिद्ध करा : 4(BL2 + CM2 ) = 5BC2.


पुढील प्रत्येक उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक उत्तराचा योग्य पर्याय निवडून त्याचे वर्णाक्षर लिहा.

एका आयताची एक बाजू 12 आणि कर्णाची लांबी 20 असेल, तर त्या आयताच्या दुसऱ्या बाजूची लांबी किती? 


एका आयताच्या बाजू अनुक्रमे 35 मीटर आणि 12 मीटर असल्यास त्याचा कर्ण किती?


सोबतच्या आकृतीत, ∆ABC मध्ये, AD ⊥ BC, तर AB2 + CD2 = BD2 + AC2 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.

कृती: पायथागोरसच्या प्रमेयानुसार, काटकोन त्रिकोण ∆ADC मध्ये, 

AC2 = AD2 + `square^2`

∴ AD2 = AC2 – CD2 …...........(i) 

तसेच, पायथागोरसच्या प्रमेयानुसार, काटकोन त्रिकोण ∆ABD मध्ये,

AB2 = `square^2` + BD

∴ AD2 = AB2 – BD2 …...… (ii)

∴ `square^2 - "BD"^2 = "AC"^2 - square^2` .....…….. (i) व (ii) वरून

∴ AB2 + CD2 = AC2 + BD2


10 मीटर लांबीची एक शिडी जमिनीपासून 8 मीटर उंचीच्या एका खिडकीपाशी पोहोचते, तर त्या भिंतीचा पाया व शिडीचे खालचे टोक यांमधील अंतर काढण्यासाठी खालील कृती पूर्ण करा.

कृती: समजा, सोबतच्या आकृतीत,

PQ ही भिंतीची उंची आहे.

PR ही शिडी आहे आणि QR त्या भिंतीचा पाया व शिडीचे खालचे टोक यांमधील अंतर आहे.

∆PQR मध्ये, ∠PQR = 90°,

पायथागोरसच्या प्रमेयानुसार, PQ2 + `square` = PR2 … (i)

PR = 10, PQ = `square`

या किमती (i) मध्ये ठेवून,

QR2 + 82 = 102

QR2 = 102 – 82

QR2 = `square - 64`

QR2 = `square`

QR = 6

यावरून, त्या भिंतीचा पाया व शिडीचे खालचे टोक यांमधील अंतर 6 मीटर आहे.


काटकोन त्रिकोणात काटकोन करणाऱ्या बाजू 9 सेमी व 12 सेमी आहेत, तर त्या त्रिकोणाच्या कर्णाची लांबी माहीत करण्यासाठी कृती पूर्ण करा. 

 

कृती: ∆PQR मध्ये, ∠PQR = 90°

पायथागोरसच्या प्रमेयानुसार,

PQ2 + `square` = PR2 .........…(i)

PR2 = 92 + 122

PR2 = `square + 144`

∴ PR2 = `square`

∴ PR = 15

त्रिकोणाचा कर्ण = `square` 


सोबतच्या आकृतीत, ∆QPR मध्ये, ∠QPR = 90°, PM ⊥ QR, PM = 10, QM = 8 यावरून QR काढण्यासाठी खालील कृती पूर्ण करा. 

कृती: 

∆PQR मध्ये, PM ⊥ QR

∠PMQ = 90°,

∆PMQ मध्ये, पायथागोरसच्या प्रमेयानुसार,

PM2 + `square` = PQ2 …(i)

∴ PQ2 = 102 + 82

∴ PQ2 = `square` + 64

PQ = `sqrt164`

∠PMR = 90°

यावरून, ∆QPR ~ ∆QMP ~ ∆PMR

∴ ∆QMP ~ ∆PMR

∴ `"PM"/"RM" =  "QM"/"PM"`

∴ PM2 = RM × QM

∴ 102 = RM × 8

RM = `100/8 = square` आणि QR = QM + MR

QR = `square + 25/2 = 41/2`


समद्विभुज काटकोन त्रिकोणाच्या एकरूप बाजूंची लांबी 7 सेमी आहे. त्याची परिमिती काढा.


3 सेमी व 5 सेमी त्रिज्या आणि केंद्र O असलेली दोन एककेंद्री वर्तुळे काढा. मोठया वर्तुळावर कोणताही एक A बिंदू घ्या. बिंदू  A मधून लहान वर्तुळाला स्पर्शिका काढा. त्या स्पर्शिकाखंडाची लांबी मोजा व लिहा. पायथागोरसच्या प्रमेयाचा उपयोग करून स्पर्शिकाखंडाची लांबी काढा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×