Advertisements
Advertisements
Question
समलंब चौकोन ABCD मध्ये, रेख AB || रेख DC रेख BD ⊥ रेख AD, रेख AC ⊥ रेख BC, जर AD = 15, BC = 15 आणि AB = 25 असेल तर A(`square`ABCD) किती?
Solution
रचना: रेख DE ⊥ रेख AB, A-E-B आणि रेख CF ⊥ रेख AB, A-F-B काढा.
उकल:
ΔACB मध्ये, ∠ACB = 90° ....[पक्ष]
∴ AB2 = AC2 + BC2 ....[पायथागोरसचे प्रमेय]
∴ 252 = AC2 + 152
∴ AC2 = 625 – 225
= 400
∴ AC = `sqrt(400)` ....[दोन्ही बाजूंचे वर्गमूळ घेऊन]
= 20 एकक
आता, A(ΔABC) = `1/2 xx "BC" xx "AC"` ....(i)
तसेच, A(ΔABC) = `1/2 xx "AB" xx "CF"` ....(ii)
∴ `1/2 xx "BC" xx "AC"` = `1/2 xx "AB" xx "CF"` ...[(i) व (ii) वरून]
∴ BC × AC = AB × CF
∴ 15 × 20 = 25 × CF
∴ CF = `(15 xx 20)/25` = 12 एकक
ΔCFB मध्ये, ∠CFB = 90° ......[रचना]
∴ BC2 = CF2 + FB2 .....[पायथागोरसचे प्रमेय]
∴ 152 = 122 + FB2
∴ FB2 = 225 – 144
∴ FB2 = 81
∴ FB = `sqrt(81)` ....[दोन्ही बाजूंचे वर्गमूळ घेऊन]
= 9 एकक
त्याचप्रमाणे, आपण सिद्ध करू शकतो, की AE = 9 एकक
आता, AB = AE + EF + FB ...[A-E-F, E-F-B]
∴ 25 = 9 + EF + 9
∴ EF = 25 – 18 = 7 एकक
`square`CDEF मध्ये,
रेख EF || रेख DC ....[पक्ष, A-E-F, E-F-B]
रेख ED || रेख FC ....[एकाच रेषेवरील लंब रेषा एकमेकींना समांतर असतात.]
∴ `square`CDEF हा समांतरभुज चौकोन आहे.
∴ DC = EF = 7 एकक ....[समांतरभुज चौकोनाच्या समोरासमोरील बाजू]
समलंब चौकोनाचे क्षेत्रफळ = `1/2` × (समांतर बाजूंच्या × उंची लांबींची बेरीज)
A(`square`ABCD) = `1/2` × CF × (AB + CD)
= `1/2 xx 12 xx (25 + 7)`
= `1/2 xx 12 xx 32`
∴ A(`square`ABCD) = 192 चौ. एकक
APPEARS IN
RELATED QUESTIONS
आकृती मध्ये ∠DFE = 90°, रेख FG ⊥ रेख ED. जर GD = 8, FG = 12, तर (1) EG (2) FD आणि (3) EF काढा.
एका आयताची लांबी 35 सेमी व रुंदी 12 सेमी आहे तर त्या आयताच्या कर्णाची लांबी काढा.
आयताच्या बाजू 11 सेमी व 60 सेमी असतील, तर त्याच्या कर्णाची लांबी काढा.
पुढील प्रत्येक उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक उत्तराचा योग्य पर्याय निवडून त्याचे वर्णाक्षर लिहा.
एका चौरसाच्या कर्णाची लांबी `sqrt2` सेमी असेल, तर त्या चौरसाच्या प्रत्येक बाजूची लांबी किती?
पुढील प्रत्येक उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक उत्तराचा योग्य पर्याय निवडून त्याचे वर्णाक्षर लिहा.
एका आयताची एक बाजू 12 आणि कर्णाची लांबी 20 असेल, तर त्या आयताच्या दुसऱ्या बाजूची लांबी किती?
एका काटकोन त्रिकोणामध्ये कर्णाची लांबी 25 सेमी व उंची 7 सेमी असेल, तर त्याच्या पायाची लांबी काढा.
10 मीटर लांबीची एक शिडी जमिनीपासून 8 मीटर उंचीच्या एका खिडकीपाशी पोहोचते, तर त्या भिंतीचा पाया व शिडीचे खालचे टोक यांमधील अंतर काढण्यासाठी खालील कृती पूर्ण करा.
कृती: समजा, सोबतच्या आकृतीत,
PQ ही भिंतीची उंची आहे.
PR ही शिडी आहे आणि QR त्या भिंतीचा पाया व शिडीचे खालचे टोक यांमधील अंतर आहे.
∆PQR मध्ये, ∠PQR = 90°,
पायथागोरसच्या प्रमेयानुसार, PQ2 + `square` = PR2 … (i)
PR = 10, PQ = `square`
या किमती (i) मध्ये ठेवून,
QR2 + 82 = 102
QR2 = 102 – 82
QR2 = `square - 64`
QR2 = `square`
QR = 6
यावरून, त्या भिंतीचा पाया व शिडीचे खालचे टोक यांमधील अंतर 6 मीटर आहे.
एका आयताचे क्षेत्रफळ 192 चौसेमी असून त्याची लांबी 16 सेमी आहे, तर त्या आयताच्या कर्णाची लांबी माहीत करण्यासाठी कृती पूर्ण करा.
कृती: सोबतच्या आकृतीत, `square`LMNT हा आयत आहे.
आयताचे क्षेत्रफळ = लांबी × रुंदी
∴ आयताचे क्षेत्रफळ = `square` × रुंदी
रुंदी = 12 सेमी
∠TLM = 90° [आयताचा प्रत्येक कोन काटकोन असतो.]
∆TLM मध्ये, पायथागोरसच्या प्रमेयानुसार,
TL2 + `square` = TM2
TM2 = `square` + 122
TM2 = `square` + 144
TM = 20
वरील आकृतीत `square`ABCD हा आयत आहे. जर AB = 5, AC = 13, तर बाजू BC ची लांबी काढण्यासाठी खालील कृती पर्ण करा.
कृती: ΔABC हा `square` त्रिकोण आहे.
∴ पायथागोरसच्या प्रमेयानुसार,
AB2 + BC2 = AC2
∴ 25 + BC2 = `square`
∴ BC2 = `square`
∴ BC = `square`
3 सेमी व 5 सेमी त्रिज्या आणि केंद्र O असलेली दोन एककेंद्री वर्तुळे काढा. मोठया वर्तुळावर कोणताही एक A बिंदू घ्या. बिंदू A मधून लहान वर्तुळाला स्पर्शिका काढा. त्या स्पर्शिकाखंडाची लांबी मोजा व लिहा. पायथागोरसच्या प्रमेयाचा उपयोग करून स्पर्शिकाखंडाची लांबी काढा.