Advertisements
Advertisements
प्रश्न
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
-1 – i
उत्तर
मान लीजिए z = – 1 – i = r(cos θ + i sin θ)
∴ rcos θ = – 1, r sin θ = -1
इनका वर्ग करके जोड़ने पर,
∴ r2 cos2θ + r2 sin2 θ = 1 + 1 = 2
या r2(cos2 θ + sin2θ) = 2
∴ r2 = 2 या r = `sqrt2`
यहाँ cos θ और sin θ दोनों ही ऋणात्मक हैं।
∴ θ तीसरे चतुर्थांश में है।
`(rsin θ)/(rcos θ) = tan θ = (-1)/(-1) = 1 = tan pi/4`
= `tan (pi + pi/4) = tan (5pi)/4 = tan (-3pi)/4`
∴ θ = `(5pi)/4 "और" - (3pi)/4`
z का ध्रुवीय रूप = `sqrt2(cos (5pi)/4 + isin (5pi)/4)`
या `sqrt2(cos (-3pi)/4 + isin (-3pi)/4)`
APPEARS IN
संबंधित प्रश्न
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए
i
यदि `(2z + 1)/(iz + 1)` का काल्पनिक भाग –2 है, तो दर्शाइए कि z को आर्गंड तल में निरूपित करने वाले बिंदु का बिंदु पथ एक सरल रेखा है।
मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार है कि `barz_1 + ibarz_2` = 0 है तथा arg (z1 z2) = π, तब arg (z1) ज्ञात कीजिए।
मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |z1 + x2| = |z1| + |z2| तब दर्शाइए कि arg(z1) – arg(z2) = 0
यदि |z| = 2 और arg(z) = `pi/4` है, तो z = ______ है।
arg(z) = `pi/3` को संतुष्ट करने वाले z का बिंदु पथ ______ है।
सम्मिश्र संख्या (i25)3 का ध्रुवीय रूप क्या है?
`sin pi/5 + i(1 - cos pi/5)` का कोणांक है
यदि a = cosθ + isinθ है, तो `(1 + "a")/(1 - "a")` का मान ज्ञात कीजिए।
दर्शाइए कि प्रतिबंध arg`((z - 1)/(z + 1)) = pi/4` को संतुष्ट करने वाली सम्मिश्र संख्या z एक वृत्त पर स्थित है।
यदि arg(z − 1) = arg(z + 3i) है, तो x − 1 : y ज्ञात कीजिए, जहाँ z = x + iy
यदि z1 और z2 दो ऐसी सम्मिश्र संख्याएँ हैं ताकि |z1| = |z2| और arg(z1) + arg(z2) = π, तो दर्शाइए कि z1 = `-barz_2`
यदि सम्मिश्र संख्या z1 और z2 के लिए, arg(z1) − arg(z2) = 0, तब दर्शाइए कि `|z_1 - z_2| = |z_1| - |z_2|`
सम्मिश्र संख्या z = `(1 - i)/(cos pi/3 + i sin pi/3)` को ध्रुवीय रूप में लिखिए।
arg(z) + arg`barz (barz ≠ 0)` ______ है।
यदि |z| = 4 और arg(z) = `(5π)/6`, तो z = ______
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
मान लीजिए कि z1 और z2 दो ऐसी सम्मिश्र संख्याएँ हैं कि |z1 + z2| = |z1| + |z2| तब arg(z1 – z2) = 0
z ज्ञात कीजिए, यदि |z| = 4 और arg(z) = `(5pi)/6`
`(1 + isqrt3)^2` का मुख्य कोणांक ज्ञात कीजिए।
|z1 + z2| = |z1| + |z2| संभव है, यदि