हिंदी

यदि a = cosθ + isinθ है, तो aa1+a1-a का मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि a = cosθ + isinθ है, तो `(1 + "a")/(1 - "a")` का मान ज्ञात कीजिए।

योग

उत्तर

टिप्पणी दि गई है कि a = cosθ + isinθ

∴ `(1 + a)/(1 - a) = (1 + cos theta + i sin theta)/(1 - cos theta - i sin theta)`

= `(1 + cos theta + i sin theta)/(1 - cos theta - i sin theta) xx (1 - cos theta + i sin theta)/(1 - cos theta + i sin theta)`

= `(1 - cos theta + i sin theta + cos theta - cos^2 theta + i sin theta cos theta + i sin theta - i sin theta cos theta + i^2 sin^2 theta)/((1 - cos theta)^2 - i^2 sin^2 theta)`

= `(1 + i sin theta - cos^2 theta + i sin theta - sin^2 theta)/(1 + cos^2 theta - 2 cos theta + sin^2 theta)` ...(i)

समीकरण (i) हल करें।

= `(sin^2 theta + 2i sin theta - sin^2 theta)/(1 + 1 - 2 cos theta)`

= `(2i sin theta)/(2 - 2 cos theta)`

= `(2i sin theta)/(2(1 - cos theta))`

= `(i sin theta)/(1 - cos theta)` ...(ii)

समीकरण (ii) हल करें।

= `(2 sin  theta/2 cos  theta/2.i)/(2sin^2  theta/2)`

= `cot  theta/2 . i`

इसलिए `(1 + a)/(1 - a)` का मान `icot  theta/2` है।
shaalaa.com
आर्गंड तल और ध्रुवीय निरूपण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - प्रश्नावली [पृष्ठ ९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
प्रश्नावली | Q 6. | पृष्ठ ९१

संबंधित प्रश्न

सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

-1 – i


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए

-3


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

`sqrt3  + i`


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए

i


यदि `(2z + 1)/(iz + 1)` का काल्पनिक भाग –2 है, तो दर्शाइए कि z को आर्गंड तल में निरूपित करने वाले बिंदु का बिंदु पथ एक सरल रेखा है।


मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार है कि `barz_1 + ibarz_2` = 0 है तथा arg (z1 z2) = π, तब arg (z1) ज्ञात कीजिए।


मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |z1 + x2| = |z1| + |z2| तब दर्शाइए कि arg(z1) – arg(z2) = 0


यदि |z| = 2 और arg(z) = `pi/4` है, तो z = ______ है।


arg(z) = `pi/3` को संतुष्ट करने वाले z का बिंदु पथ ______ है।


`sin  pi/5 + i(1 - cos  pi/5)` का कोणांक है


दर्शाइए कि प्रतिबंध arg`((z - 1)/(z + 1)) = pi/4` को संतुष्ट करने वाली सम्मिश्र संख्या z एक वृत्त पर स्थित है।


यदि arg(z − 1) = arg(z + 3i) है, तो x − 1 : y ज्ञात कीजिए, जहाँ z = x + iy


यदि z1 और z2 दो ऐसी सम्मिश्र संख्याएँ हैं ताकि |z1| = |z2| और arg(z1) + arg(z2) = π, तो दर्शाइए कि z1 = `-barz_2`


यदि सम्मिश्र संख्या z1 और z2 के लिए, arg(z1) − arg(z2) = 0, तब दर्शाइए कि `|z_1 - z_2| = |z_1| - |z_2|`


सम्मिश्र संख्या z = `(1 - i)/(cos  pi/3 + i sin  pi/3)` को ध्रुवीय रूप में लिखिए।


यदि z और w दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |zw| = 1 और arg(z) − arg(w) = `π/2`, तो दर्शाइए कि `barz`w = –i


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

मान लीजिए कि z1 और z2 दो ऐसी सम्मिश्र संख्याएँ हैं कि |z1 + z2| = |z1| + |z2| तब arg(z1 – z2) = 0


`(1 + isqrt3)^2` का मुख्य कोणांक ज्ञात कीजिए।


|z1 + z2| = |z1| + |z2| संभव है, यदि


जब x < 0 तो arg(x) का मान है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×