हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

सोबतच्या आकृतीत, ∠DFE = 90°, FG ⊥ ED, जर GD = 8, FG = 12, lej (1) EG, (2) FD आणि (3) EF काढा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

सोबतच्या आकृतीत, ∠DFE = 90°, FG ⊥ ED, जर GD = 8, FG = 12, lej (1) EG, (2) FD आणि (3) EF काढा.

 

योग

उत्तर

i. ∆DEF मध्ये, ∠DFE = 90° आणि रेख FG ⊥ कर्ण ED…..... [पक्ष]

∴ FG2 = EG × GD ............[भूमितीमध्याचे प्रमेय]

∴ (12)2 = EG × 8 ..... [पक्ष]

∴ 144 = EG × 8

∴ EG = `144/8`

∴ EG = 18 एकक

ii. ∆DGF मध्ये, ∠DGF = 90° ...............[∵ FG ⊥ ED]

∴ FD2 = FG2 + GD2 ....…[पायथागोरसचे प्रमेय]

∴ FD2 = (12)2 + (8)2 …... [पक्ष]

∴ FD2 = 144 + 64

∴ FD2 = 208

∴ FD = `sqrt(16 xx 13)` ..................[दोन्ही बाजूंचे वर्गमूळ घेऊन]

∴ FD = `4sqrt13` एकक

iii. EGF मध्ये, ∠EGF = 90° …[⸪ FG ⊥ ED]

∴ EF2 = EG2 + FG2 …...…[पायथागोरसचे प्रमेय]

∴ EF2 = (18)2 + (12)2 …[(i) आणि पक्ष वरून]

∴ EF2 = 324 + 144 

∴ EF2 = 468

∴ EF = `sqrt(36 xx 13)` ................[दोन्ही बाजूंचे वर्गमूळ घेऊन]

∴ EF = `6sqrt13` एकक

shaalaa.com
पायथागोरसचे प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: पयथागोरसचे प्रमेर - Q ३ ब

APPEARS IN

एससीईआरटी महाराष्ट्र Geometry (Mathematics 2) [Marathi] 10 Standard SSC
अध्याय 2 पयथागोरसचे प्रमेर
Q ३ ब | Q १)

संबंधित प्रश्न

आकृती मध्ये M हा बाजू QR चा मध्यबिंदू आहे. ∠PRQ = 90° असेल तर सिद्ध करा, PQ2 = 4PM2 - 3PR2


पुढील प्रत्येक उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक उत्तराचा योग्य पर्याय निवडून त्याचे वर्णाक्षर लिहा.

काटकोन त्रिकोणात काटकोन करणाऱ्या बाजूंच्या वर्गांची बेरीज 169 असेल, तर त्याच्या कर्णाची लांबी किती?


प्रणाली आणि प्रसाद एकाच ठिकाणावरून पूर्व आणि उत्तर दिशेला सारख्या वेगाने निघाले. दोन तासांनंतर त्यांच्यामधील अंतर `15sqrt2` किमी असेल तर त्यांचा ताशी वेग काढा.


ΔABC मध्ये ∠BAC = 90°, रेख BL व रेख CM या ΔABC च्या मध्यगा आहेत, तर सिद्ध करा : 4(BL2 + CM2 ) = 5BC2.


ΔABC मध्ये रेख AD ⊥ रेख BC आणि DB = 3CD, तर सिद्ध करा : 2AB2 = 2AC2 + BC2  


पुढील प्रत्येक उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक उत्तराचा योग्य पर्याय निवडून त्याचे वर्णाक्षर लिहा.

एका आयताची एक बाजू 12 आणि कर्णाची लांबी 20 असेल, तर त्या आयताच्या दुसऱ्या बाजूची लांबी किती? 


पुढील प्रत्येक उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक उत्तराचा योग्य पर्याय निवडून त्याचे वर्णाक्षर लिहा.

एका समभुज चौकोनाच्या कर्णाची लांबी अनुक्रमे 60 व 80 असेल, तर त्या समभुज चौकोनाच्या बाजूची लांबी किती?


एका काटकोन त्रिकोणामध्ये काटकोन करणाऱ्या बाजू 24 सेमी व 18 सेमी असतील, तर त्याच्या कर्णाची लांबी काढा.


सोबतच्या आकृतीत, ∆ABC मध्ये, AD ⊥ BC, तर AB2 + CD2 = BD2 + AC2 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.

कृती: पायथागोरसच्या प्रमेयानुसार, काटकोन त्रिकोण ∆ADC मध्ये, 

AC2 = AD2 + `square^2`

∴ AD2 = AC2 – CD2 …...........(i) 

तसेच, पायथागोरसच्या प्रमेयानुसार, काटकोन त्रिकोण ∆ABD मध्ये,

AB2 = `square^2` + BD

∴ AD2 = AB2 – BD2 …...… (ii)

∴ `square^2 - "BD"^2 = "AC"^2 - square^2` .....…….. (i) व (ii) वरून

∴ AB2 + CD2 = AC2 + BD2


समद्विभुज काटकोन त्रिकोणाच्या एकरूप बाजूंची लांबी 7 सेमी आहे. त्याची परिमिती काढा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×