Advertisements
Advertisements
Question
सोबतच्या आकृतीत, ∠DFE = 90°, FG ⊥ ED, जर GD = 8, FG = 12, lej (1) EG, (2) FD आणि (3) EF काढा.
Solution
i. ∆DEF मध्ये, ∠DFE = 90° आणि रेख FG ⊥ कर्ण ED…..... [पक्ष]
∴ FG2 = EG × GD ............[भूमितीमध्याचे प्रमेय]
∴ (12)2 = EG × 8 ..... [पक्ष]
∴ 144 = EG × 8
∴ EG = `144/8`
∴ EG = 18 एकक
ii. ∆DGF मध्ये, ∠DGF = 90° ...............[∵ FG ⊥ ED]
∴ FD2 = FG2 + GD2 ....…[पायथागोरसचे प्रमेय]
∴ FD2 = (12)2 + (8)2 …... [पक्ष]
∴ FD2 = 144 + 64
∴ FD2 = 208
∴ FD = `sqrt(16 xx 13)` ..................[दोन्ही बाजूंचे वर्गमूळ घेऊन]
∴ FD = `4sqrt13` एकक
iii. EGF मध्ये, ∠EGF = 90° …[⸪ FG ⊥ ED]
∴ EF2 = EG2 + FG2 …...…[पायथागोरसचे प्रमेय]
∴ EF2 = (18)2 + (12)2 …[(i) आणि पक्ष वरून]
∴ EF2 = 324 + 144
∴ EF2 = 468
∴ EF = `sqrt(36 xx 13)` ................[दोन्ही बाजूंचे वर्गमूळ घेऊन]
∴ EF = `6sqrt13` एकक
APPEARS IN
RELATED QUESTIONS
एका चौरसाचा कर्ण 10 सेमी आहे तर त्याच्या बाजूची लांबी व परिमिती काढा.
पुढील प्रत्येक उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक उत्तराचा योग्य पर्याय निवडून त्याचे वर्णाक्षर लिहा.
काटकोन त्रिकोणात काटकोन करणाऱ्या बाजूंच्या वर्गांची बेरीज 169 असेल, तर त्याच्या कर्णाची लांबी किती?
आयताच्या बाजू 11 सेमी व 60 सेमी असतील, तर त्याच्या कर्णाची लांबी काढा.
समद्विभुज काटकोन त्रिकोणाची बाजू x आहे, तर त्याच्या कर्णाची लांबी काढा.
प्रणाली आणि प्रसाद एकाच ठिकाणावरून पूर्व आणि उत्तर दिशेला सारख्या वेगाने निघाले. दोन तासांनंतर त्यांच्यामधील अंतर `15sqrt2` किमी असेल तर त्यांचा ताशी वेग काढा.
ΔABC मध्ये रेख AD ⊥ रेख BC आणि DB = 3CD, तर सिद्ध करा : 2AB2 = 2AC2 + BC2
पुढील प्रत्येक उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक उत्तराचा योग्य पर्याय निवडून त्याचे वर्णाक्षर लिहा.
एका समभुज चौकोनाच्या कर्णाची लांबी अनुक्रमे 60 व 80 असेल, तर त्या समभुज चौकोनाच्या बाजूची लांबी किती?
एका काटकोन त्रिकोणामध्ये काटकोन करणाऱ्या बाजू 24 सेमी व 18 सेमी असतील, तर त्याच्या कर्णाची लांबी काढा.
एका काटकोन त्रिकोणामध्ये कर्णाची लांबी 25 सेमी व उंची 7 सेमी असेल, तर त्याच्या पायाची लांबी काढा.
∆LMN मध्ये, l = 5, m = 13, n = 12, तर ∆LMN हा काटकोन त्रिकोण आहे किंवा नाही ते ठरवण्यासाठी कृती करा. [l, m, n या ∠L, ∠M, व ∠N यांच्या समोरील बाजू आहेत.]
कृती: ∆LMN मध्ये, l = 5, m = 13, n = `square`
l2 = `square`, m2 = 169; n2 = 144.
l2 + n2 = 25 + 144 = `square`
`square^2` + l2 = m2
∴ पायथागोरसच्या प्रमेयानुसार, ∆LMN हा काटकोन त्रिकोण आहे.