Advertisements
Advertisements
प्रश्न
Solve the following equation.
`4"x"+1/2=9/2`
उत्तर
`4"x"+1/2=9/2`
⇒ 4x = `9/2-1/2`
⇒ 4x = `(9-1)/2`
⇒ 4x = `8/2`
⇒ 4x = 4
⇒ x = `4/4`
⇒ x = 1
संबंधित प्रश्न
Add the following:
2p2q2 − 3pq + 4, 5 + 7pq − 3p2q2
Subtract: 4pq - 5q2 - 3p2 from 5p2 + 3q2 - pq
Add the following algebraic expression:
\[\frac{3}{2}a - \frac{5}{4}b + \frac{2}{5}c, \frac{2}{3}a - \frac{7}{2}b + \frac{7}{2}c, \frac{5}{3}a + \frac{5}{2}b - \frac{5}{4}c\]
Subtract:
2a2 from − 7a2
Subtract:
\[\frac{2}{3} y^3 - \frac{2}{7} y^2 - 5 \text { from }\frac{1}{3} y^3 + \frac{5}{7} y^2 + y - 2\]
Subtract:
\[\frac{ab}{7} - \frac{35}{3}bc + \frac{6}{5}ac \text { from } \frac{3}{5}bc - \frac{4}{5}ac\]
Subtract the sum of 3l − 4m − 7n2 and 2l + 3m − 4n2 from the sum of 9l + 2m − 3n2 and − 3l + m + 4n2 .....
If \[x + \frac{1}{x} = 20,\]find the value of \[x^2 + \frac{1}{x^2} .\].
If \[x - \frac{1}{x} = 3,\] find the values of \[x^2 + \frac{1}{x^2}\] and \[x^4 + \frac{1}{x^4} .\]
Sum of x and y is x + y.