Advertisements
Advertisements
प्रश्न
Solve the following:
If `("d"y)/("d"x) + 2 y tan x = sin x` and if y = 0 when x = `pi/3` express y in term of x
उत्तर
`("d"y)/("d"x) + 2 y tan x = sin x`
It is of the form `("d"y)/("d"x) + "P"y` = Q
Here P = 2tan x
Q = sin x
`int "Pd"x = int 2 tan x "d"x`
= `2 int tan x "d"x`
= `2 log sec x`
= `log sec^2x`
I.F = `"e"^(int pdx)`
= `"e"^(log(sec^2x)`
= sec2x
The required solution is
y(I.F) = `int "Q"("I.F") "d"x + "c"`
y(sec2x) = `int sin x (sec^2x) "d"x + "c"`
y(sec2x) = `int sin x (1/(cos x)) sec x "d"x + "c"`
y(sec2x) = `int (sinx/cosx) sec x "d"x + "c"`
y(sec2x) = `int tan x sec x "d"x + "c"`
⇒ y(sec2x) = sec x + c ........(1)
If y = 0
When x = `pi/3`
Then (1)
⇒ `0(sec^2 (pi/3)) = sec (pi/3) + "c"`
0 = 2 + c
⇒ c = – 2
∴ Equation (1)
⇒ y sec2x = sec x – 2
APPEARS IN
संबंधित प्रश्न
If F is the constant force generated by the motor of an automobile of mass M, its velocity V is given by `"M""dv"/"dt"` = F – kV, where k is a constant. Express V in terms of t given that V = 0 when t = 0
Solve the following differential equation:
`sin ("d"y)/("d"x)` = a, y(0) = 1
Solve the following differential equation:
`y"e"^(x/y) "d"x = (x"e"^(x/y) + y) "d"y`
Solve the following differential equation:
`x ("d"y)/("d"x) = y - xcos^2(y/x)`
Choose the correct alternative:
The general solution of the differential equation `log(("d"y)/("d"x)) = x + y` is
Solve: ydx – xdy = 0 dy
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) = x + y`
Solve the following homogeneous differential equation:
`(x - y) ("d"y)/("d"x) = x + 3y`
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) + "P"y` = Q where P and Q are the function of x is
Choose the correct alternative:
A homogeneous differential equation of the form `("d"y)/("d"x) = f(y/x)` can be solved by making substitution