Advertisements
Advertisements
प्रश्न
Solve the following inequation and represent the solution set on the number line : `-3 < -(1)/(2) - (2x)/(3) ≤ (5)/(6), x ∈ "R"`
उत्तर
`-3 < -(1)/(2) - (2x)/(3) ≤ (5)/(6), x ∈ "R"`
(i) `-3 < -(1)/(2) - (2x)/(3)`
⇒ `-3 ≤ - (1/2 + (2x)/3)`
⇒ `- (1/2 + (2x)/3) > -3`
⇒ `-(2x)/(3) > -3 + (1)/(2)`
⇒ `-(2x)/(3) > (-5)/(2)`
⇒ `(2x)/(3) < (5)/(2)`
⇒ `x < (5)/(2) xx (3)/(2)`
⇒ `x < (15)/(4)` ....(i)
(ii) `-(1)/(2) - (2x)/(3) ≤ (5)/(6)`
⇒ `-(2x)/(3) ≤ (5)/(6) + (1)/(2)`
⇒ `(-2x)/(3) ≤ (5 + 3)/(6)`
⇒ `(-2)/(3) xx ≤ (8)/(6)`
⇒ `(2)/(3)x ≥ (-8)/(6)`
⇒ `x ≥ (-8)/(6) xx (3)/(2)`
⇒ x ≥ -2
⇒ -2 ≤ x ....(ii)
⇒ From (i) and (ii),
`-2 ≤ ≤ (15)/(4)`
∴ Solution = `{ x : x ∈ "R", -2 ≤ x < (15)/(4)}`
Now solution on number line
APPEARS IN
संबंधित प्रश्न
Represent the following inequalities on real number line:
– 2 ≤ x < 5
For the following inequations, graph the solution set on the real number line:
– 4 ≤ 3x – 1 < 8
Find the values of x, which satisfy the inequation
`-2 5/6 < 1/2 - (2x)/3 <= 2`, x ∈ W
Graph the solution set on the number line.
Solve the following linear in-equation and graph the solution set on a real number line :
`4 3/4 >= "x" + 5/6 > 1/3` , x ∈ R
Graph the solution set for each inequality:
x < 4
Solve the following inequalities and represent the solution on a number line:
3x + 4 ≤ x + 8
Solve the following inequalities and represent the solution set on a number line:
`3 > (2(3 - 4x))/(7) ≥ - 2`.
Given A = {x : x ∈ I, – 4 ≤ x ≤ 4}, solve 2x – 3 < 3 where x has the domain A Graph the solution set on the number line.
Find the values of x, which satisfy the inequation : `-2 ≤ (1)/(2) - (2x)/(3) ≤ 1(5)/(6)`, x ∈ N. Graph the solution set on the number line.
Solve the following inequation, write down the solution set and represent it on the real number line.
`-3 + x ≤ (7x)/2 + 2 < 8 + 2x, x ∈ I`