Advertisements
Advertisements
प्रश्न
Solve the following inequation and represent the solution set on the number line : `-3 < -(1)/(2) - (2x)/(3) ≤ (5)/(6), x ∈ "R"`
उत्तर
`-3 < -(1)/(2) - (2x)/(3) ≤ (5)/(6), x ∈ "R"`
(i) `-3 < -(1)/(2) - (2x)/(3)`
⇒ `-3 ≤ - (1/2 + (2x)/3)`
⇒ `- (1/2 + (2x)/3) > -3`
⇒ `-(2x)/(3) > -3 + (1)/(2)`
⇒ `-(2x)/(3) > (-5)/(2)`
⇒ `(2x)/(3) < (5)/(2)`
⇒ `x < (5)/(2) xx (3)/(2)`
⇒ `x < (15)/(4)` ....(i)
(ii) `-(1)/(2) - (2x)/(3) ≤ (5)/(6)`
⇒ `-(2x)/(3) ≤ (5)/(6) + (1)/(2)`
⇒ `(-2x)/(3) ≤ (5 + 3)/(6)`
⇒ `(-2)/(3) xx ≤ (8)/(6)`
⇒ `(2)/(3)x ≥ (-8)/(6)`
⇒ `x ≥ (-8)/(6) xx (3)/(2)`
⇒ x ≥ -2
⇒ -2 ≤ x ....(ii)
⇒ From (i) and (ii),
`-2 ≤ ≤ (15)/(4)`
∴ Solution = `{ x : x ∈ "R", -2 ≤ x < (15)/(4)}`
Now solution on number line
APPEARS IN
संबंधित प्रश्न
Solve the following in equation and represent the solution set on the number line.
`R - 3 < -1/2 - (2x)/3 <= 5/6, x ∈ R`
Represent the following inequalities on real number line:
– 4 < x < 4
Represent the solution of the following inequalities on the real number line:
7 – x ≤ 2 – 6x
Use the real number line to find the range of values of x for which:
x > 3 and 0 < x < 6
Find the set of values of x, satisfying:
`7x + 3 >= 3x - 5` and `x/4 - 5 <= 5/4 -x`, where x ∈ N
Solve the following linear in-equation and graph the solution set on a real number line:
3(5x+ 3) ≥ 2(9x-17), x ∈ W
Solve the following inequation and represent the solution set on a number line.
`-8 1/2 < -1/2 - 4x ≤ 7 1/2, x ∈ I`
Solve the following in equation, write the solution set and represent it on the number line:
`-"x"/3≤ "x"/2 -1 1/3<1/6, "x" in "R"`
Solve `(3x)/(5) - (2x - 1)/(3)` > 1, x ∈ R and represent the solution set on the number line.
Solve the following inequation, write down the solution set and represent it on the real number line.
`-3 + x ≤ (7x)/2 + 2 < 8 + 2x, x ∈ I`