Advertisements
Advertisements
प्रश्न
Sum of the squares of adjacent sides of a parallelogram is 130 sq.cm and length of one of its diagonals is 14 cm. Find the length of the other diagonal.
उत्तर
It is given that,
AB2 + AD2 = 130 sq. cm
BD = 14 cm
Diagonals of a parallelogram bisect each other.
i.e. O is the midpoint of AC and BD.
In ∆ABD, point O is the midpoint of side BD.
\[{AB}^2 + {AD}^2 = 2 {AO}^2 + 2 {BO}^2 \left( \text{by Apollonius theorem} \right)\]
\[ \Rightarrow 130 = 2 {AO}^2 + 2 \left( 7 \right)^2 \]
\[ \Rightarrow 130 = 2 {AO}^2 + 2 \times 49\]
\[ \Rightarrow 130 = 2 {AO}^2 + 98\]
\[ \Rightarrow 2 {AO}^2 = 130 - 98\]
\[ \Rightarrow 2 {AO}^2 = 32\]
\[ \Rightarrow {AO}^2 = 16\]
\[ \Rightarrow AO = 4 cm\]
Since point O is the midpoint of side AC.
Hence, the length of the other diagonal is 8 cm.
APPEARS IN
संबंधित प्रश्न
Adjacent sides of a parallelogram are 11 cm and 17 cm. If the length of one of its diagonal is 26 cm, find the length of the other.
In the given figure, seg PS is the median of ∆PQR and PT ⊥ QR. Prove that,
PR2 = PS2 + QR × ST + `("QR"/2)^2`
In ∆ABC, point M is the midpoint of side BC. If, AB2 + AC2 = 290 cm2, AM = 8 cm, find BC.
Some question and their alternative answer are given.
In a right-angled triangle, if sum of the squares of the sides making right angle is 169 then what is the length of the hypotenuse?
Some question and their alternative answer are given. Select the correct alternative.
Find perimeter of a square if its diagonal is \[10\sqrt{2}\]
Some question and their alternative answer are given. Select the correct alternative.
Altitude on the hypotenuse of a right angled triangle divides it in two parts of lengths 4 cm and 9 cm. Find the length of the altitude.
Height and base of a right angled triangle are 24 cm and 18 cm find the length of its hypotenuse
Do sides 7 cm, 24 cm, 25 cm form a right angled triangle ? Give reason
In ∆RST, ∠S = 90°, ∠T = 30°, RT = 12 cm then find RS and ST.
Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
Seg PM is a median of ∆PQR. If PQ = 40, PR = 42 and PM = 29, find QR.
Choose the correct alternative:
Out of the following which is a Pythagorean triplet?
In ΔPQR, seg PM is a median, PM = 9 and PQ2 + PR2 = 290. Find the length of QR.
Choose the correct alternative:
Out of given triplets, which is not a Pythagoras triplet?
Choose the correct alternative:
Out of all numbers from given dates, which is a Pythagoras triplet?
"The diagonals bisect each other at right angles." In which of the following quadrilaterals is the given property observed?
Which of the following figure is formed by joining the mid-points of the adjacent sides of a square?