Advertisements
Advertisements
प्रश्न
Some question and their alternative answer are given.
In a right-angled triangle, if sum of the squares of the sides making right angle is 169 then what is the length of the hypotenuse?
विकल्प
15
13
5
12
उत्तर
13
Explanation:
According to the Pythagoras theorem,
Sum of the squares of the sides making the right angle is equal to the square of the third side.
∴ 169 = square of the hypotenuse
⇒ Length of the hypotenuse = `sqrt169` = 13
Hence, the correct option is 13.
APPEARS IN
संबंधित प्रश्न
Adjacent sides of a parallelogram are 11 cm and 17 cm. If the length of one of its diagonal is 26 cm, find the length of the other.
In ∆ABC, point M is the midpoint of side BC. If, AB2 + AC2 = 290 cm2, AM = 8 cm, find BC.
Out of the following, which is the Pythagorean triplet?
Some question and their alternative answer are given. Select the correct alternative.
Altitude on the hypotenuse of a right angled triangle divides it in two parts of lengths 4 cm and 9 cm. Find the length of the altitude.
Height and base of a right angled triangle are 24 cm and 18 cm find the length of its hypotenuse
Some question and their alternative answer are given. Select the correct alternative.
In ∆ABC, AB = \[6\sqrt{3}\] cm, AC = 12 cm, BC = 6 cm. Find measure of ∠A.
In ∆RST, ∠S = 90°, ∠T = 30°, RT = 12 cm then find RS and ST.
Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
Sum of the squares of adjacent sides of a parallelogram is 130 sq.cm and length of one of its diagonals is 14 cm. Find the length of the other diagonal.
In ΔPQR, seg PM is a median, PM = 9 and PQ2 + PR2 = 290. Find the length of QR.
In ΔPQR, seg PM is the median. If PM = 9, PQ2 + PR2 = 290, Find QR.
In ΔABC, seg AP is a median. If BC = 18, AB2 + AC2 = 260, then find the length of AP.
Choose the correct alternative:
Out of all numbers from given dates, which is a Pythagoras triplet?
Height and base of a right angled triangle are 24 cm and 18 cm. Find the length of its hypotenus?
"The diagonals bisect each other at right angles." In which of the following quadrilaterals is the given property observed?
In the given figure, triangle ABC is a right-angled at B. D is the mid-point of side BC. Prove that AC2 = 4AD2 – 3AB2.