हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Suppose, One Wishes to Construct a 1⋅0 Farad Capacitor Using Circular Discs. If the Separation Between the Discs Be Kept at 1⋅0 Mm, What Would Be the Radius of the Discs? - Physics

Advertisements
Advertisements

प्रश्न

Suppose, one wishes to construct a 1⋅0 farad capacitor using circular discs. If the separation between the discs be kept at 1⋅0 mm, what would be the radius of the discs?

योग

उत्तर

The capacitance of a parallel-plate capacitor is given by `C = (∈_0A)/d`

Here,
A = Area of the plate
d = Distance between the parallel plates
Now,
Let the radius of the disc be r.

`therefore C = (∈_0A)/d = (∈_0(pir^2))/d`

⇒ `r = sqrt((cd)/(∈_0pi)`

⇒ `r = sqrt((1 xx (1 xx 10^-3))/(8.85 xx 10^-12 xx 3.14))` = `sqrt(35.98 xx 10^6)  "m"`

⇒ `r ≈ sqrt(36 xx 10^6)  "m" = 6 xx 10^3  "m" = 6  "km"`

Thus, the radius of the plates of the capacitor for the given configuration is 6 km.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Capacitors - Exercises [पृष्ठ १६५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 9 Capacitors
Exercises | Q 3 | पृष्ठ १६५

संबंधित प्रश्न

When an AC source is connected to an ideal capacitor, show that the average power supplied by the source over a complete cycle is zero


A capacitor of capacitance ‘C’ is being charged by connecting it across a dc source along with an ammeter. Will the ammeter show a momentary deflection during the process of charging? If so, how would you explain this momentary deflection and the resulting continuity of current in the circuit? Write the expression for the current inside the capacitor.


As `C = (1/V) Q` , can you say that the capacitance C is proportional to the charge Q?


Following operations can be performed on a capacitor:
X − connect the capacitor to a battery of emf ε.
Y − disconnect the battery.
Z − reconnect the battery with polarity reversed.
W − insert a dielectric slab in the capacitor.
(a) In XYZ (perform X, then Y, then Z) the stored electric energy remains unchanged and no thermal energy is developed.
(b) The charge appearing on the capacitor is greater after the action XWY than after the action XYZ.
(c) The electric energy stored in the capacitor is greater after the action WXY than after the action XYW.
(d) The electric field in the capacitor after the action XW is the same as that after WX.


Find the charges on the three capacitors connected to a battery as shown in figure.

Take `C_1 = 2.0  uF , C_2 = 4.0  uF , C_3 = 6.0  uF and V` = 12 volts.


Find the charge supplied by the battery in the arrangement shown in figure.


It is required to construct a 10 µF capacitor which can be connected across a 200 V battery. Capacitors of capacitance 10 µF are available but they can withstand only 50 V. Design a combination which can yield the desired result.


A parallel-plate capacitor of capacitance 5 µF is connected to a battery of emf 6 V. The separation between the plates is 2 mm. (a) Find the charge on the positive plate. (b) Find the electric field between the plates. (c) A dielectric slab of thickness 1 mm and dielectric constant 5 is inserted into the gap to occupy the lower half of it. Find the capacitance of the new combination. (d) How much charge has flown through the battery after the slab is inserted?


Figure shows two parallel plate capacitors with fixed plates and connected to two batteries. The separation between the plates is the same for the two capacitors. The plates are rectangular in shape with width b and lengths l1 and l2. The left half of the dielectric slab has a dielectric constant K1 and the right half K2. Neglecting any friction, find the ration of the emf of the left battery to that of the right battery for which the dielectric slab may remain in equilibrium.


The figure show a network of five capacitors connected to a 10V battery. Calculate the charge acquired by the 5μF capacitor.


Obtain an expression for equivalent capacitance when three capacitors C1, C2 and C3 are connected in series.


The variation of inductive reactance (XL) of an inductor with the frequency (f) of the ac source of 100 V and variable frequency is shown in fig.

(i) Calculate the self-inductance of the inductor.
(ii) When this inductor is used in series with a capacitor of unknown value and resistor of 10 Ω at 300 s–1, maximum power dissipation occurs in the circuit. Calculate the capacitance of the capacitor.


If the voltage applied on a capacitor is increased from V to 2V, choose the correct conclusion.


A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitance of the capacitor ______.

Two similar conducting spheres having charge+ q and -q are placed at 'd' seperation from each other in air. The radius of each ball is r and the separation between their centre is d (d >> r). Calculate the capacitance of the two ball system ______.


A parallel plate capacitor is filled by a dielectric whose relative permittivity varies with the applied voltage (U) as ε = αU where α = 2V–1. A similar capacitor with no dielectric is charged to U0 = 78V. It is then connected to the uncharged capacitor with the dielectric. Find the final voltage on the capacitors.


The material filled between the plates of a parallel plate capacitor has a resistivity of 200Ωm. The value of the capacitance of the capacitor is 2 pF. If a potential difference of 40V is applied across the plates of the capacitor, then the value of leakage current flowing out of the capacitor is ______.

(given the value of relative permittivity of a material is 50.)


Current versus time and voltage versus time graphs of a circuit element are shown in figure.

The type of the circuit element is ______.


A capacitor with capacitance 5µF is charged to 5 µC. If the plates are pulled apart to reduce the capacitance to 2 µF, how much work is done?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×