हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

The Displacement of the Particle at X = 0 of a Stretched String Carrying a Wave in the Positive X-direction is Given F(T) = a Sin (T/T). the Wave Speed is V. - Physics

Advertisements
Advertisements

प्रश्न

The displacement of the particle at x = 0 of a stretched string carrying a wave in the positive x-direction is given f(t) = A sin (t/T). The wave speed is  v. Write the wave equation.

योग

उत्तर

Given,
Equation of the wave travelling in the positive x-direction at x = 0:
\[f\left( t \right) = A\sin\left( \frac{t}{T} \right)\] 
Here,
Wave speed = v
Wavelength, λ = vT
T = Time period
Therefore, the general equation of the wave can be represented by 
\[y = A\sin\left[ \left( \frac{t}{T} \right) - \left( \frac{x}{\nu T} \right) \right]\]

shaalaa.com
The Speed of a Travelling Wave
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Wave Motion and Waves on a String - Exercise [पृष्ठ ३२४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 15 Wave Motion and Waves on a String
Exercise | Q 5 | पृष्ठ ३२४

संबंधित प्रश्न

You have learnt that a travelling wave in one dimension is represented by a function y= f (x, t)where x and t must appear in the combination x – v t or x + v t, i.e. y = f (x ± v t). Is the converse true? Examine if the following functions for y can possibly represent a travelling wave:

(a) `(x – vt )^2`

(b) `log [(x + vt)/x_0]`

(c) `1/(x + vt)`


A wire stretched between two rigid supports vibrates in its fundamental mode with a frequency of 45 Hz. The mass of the wire is 3.5 × 10–2 kg and its linear mass density is 4.0 × 10–2 kg m–1. What is (a) the speed of a transverse wave on the string, and (b) the tension in the string?


A metre-long tube open at one end, with a movable piston at the other end, shows resonance with a fixed frequency source (a tuning fork of frequency 340 Hz) when the tube length is 25.5 cm or 79.3 cm. Estimate the speed of sound in air at the temperature of the experiment. The edge effects may be neglected.


A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy submarine moves towards the SONAR with a speed of 360 km h–1. What is the frequency of sound reflected by the submarine? Take the speed of sound in water to be 1450 m s–1.


Earthquakes generate sound waves inside the earth. Unlike a gas, the earth can experience both transverse (S) and longitudinal (P) sound waves. Typically the speed of wave is about 4.0 km s–1, and that of wave is 8.0 km s–1. A seismograph records and waves from an earthquake. The first wave arrives 4 min before the first wave. Assuming the waves travel in straight line, at what distance does the earthquake occur?


The radio and TV programmes, telecast at the studio, reach our antenna by wave motion. Is it a mechanical wave or nonmechanical?


Two wave pulses travel in opposite directions on a string and approach each other. The shape of one pulse is inverted with respect to the other.


Two waves of equal amplitude A, and equal frequency travel in the same direction in a medium. The amplitude of the resultant wave is


A wave travels along the positive x-direction with a speed of 20 m s−1. The amplitude of the wave is 0⋅20 cm and the wavelength 2⋅0 cm. (a) Write the suitable wave equation which describes this wave. (b) What is the displacement and velocity of the particle at x= 2⋅0 cm at time = 0 according to the wave equation written? Can you get different values of this quantity if the wave equation is written in a different fashion?


Following figure shows two wave pulses at t = 0 travelling on a string in opposite directions with the same wave speed 50 cm s−1. Sketch the shape of the string at t = 4 ms, 6 ms, 8 ms, and 12 ms.


A steel wire fixed at both ends has a fundamental frequency of 200 Hz. A person can hear sound of maximum frequency 14 kHz. What is the highest harmonic that can be played on this string which is audible to the person?


The equation for the vibration of a string, fixed at both ends vibrating in its third harmonic, is given by
\[y = \left( 0 \cdot 4  cm \right)  \sin\left[ \left( 0 \cdot 314  {cm}^{- 1} \right)  x \right]  \cos  \left[ \left( 600\pi  s^{- 1} \right)  t \right]\]
(a) What is the frequency of vibration? (b) What are the positions of the nodes? (c) What is the length of the string? (d) What is the wavelength and the speed of two travelling waves that can interfere to give this vibration?


A 40 cm wire having a mass of 3⋅2 g is stretched between two fixed supports 40⋅05 cm apart. In its fundamental mode, the wire vibrates at 220 Hz. If the area of cross section of the wire is 1⋅0 mm2, find its Young modulus.


The string of a guitar is 80 cm long and has a fundamental frequency of 112 Hz. If a guitarist wishes to produce a frequency of 160 Hz, where should the person press the string?


Use the formula `v = sqrt((gamma P)/rho)` to explain why the speed of sound in air is independent of pressure.


A bat emits an ultrasonic sound of frequency 1000 kHz in the air. If the sound meets a water surface, what is the wavelength of the the reflected sound? The speed of sound in air is 340 m s–1 and in water 1486 m s–1.


For the travelling harmonic wave

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of 4 m.


If c is r.m.s. speed of molecules in a gas and v is the speed of sound waves in the gas, show that c/v is constant and independent of temperature for all diatomic gases.


Given below are some functions of x and t to represent the displacement of an elastic wave.

  1. y = 5 cos (4x) sin (20t)
  2. y = 4 sin (5x – t/2) + 3 cos (5x – t/2)
  3. y = 10 cos [(252 – 250) πt] cos [(252 + 250)πt]
  4. y = 100 cos (100πt + 0.5x)

State which of these represent

  1. a travelling wave along –x direction
  2. a stationary wave
  3. beats
  4. a travelling wave along +x direction.

Given reasons for your answers.


The amplitude of wave disturbance propagating in the positive x-direction given is by `1/(1 + x)^2` at time t = 0 and `1/(1 + (x - 2)^2)` at t = 1 s, where x and y are in 2 metres. The shape of wave does not change during the propagation. The velocity of the wave will be ______ m/s.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×