हिंदी

Use the formula v=γPρ to explain why the speed of sound in air is independent of pressure. - Physics

Advertisements
Advertisements

प्रश्न

Use the formula `v = sqrt((gamma P)/rho)` to explain why the speed of sound in air is independent of pressure.

संख्यात्मक

उत्तर १

Take the relation:

`v = sqrt((gamma P)/rho)`   ....(i)

where

Density, `rho = "Mass"/"Volume" = M/V`

M = Molecular weight of the gas

V = Volume of the gas

Hence, equation (i) reduces to

`v = sqrt((gamma "PV")/"M")` .....(ii)

Now from the ideal gas equation for n = 1:

PV = RT

For constant T, PV = Constant

Since both M and γ are constants, v = Constant

Hence, at a constant temperature, the speed of sound in a gaseous medium is independent of the change in the pressure of the gas.

shaalaa.com

उत्तर २

We are given that `v = sqrt((gamma p)/rho)`

We know PV = nRT            (For n moles of ideal gas)

`=> "PV" = "m"/"M" "RT"`

where m is the total mass and M is the molecular mass of the gas

`:. P = "m"/"M" * "RT"/"M"`

`= (rho"RT")/"M"`

`=> "P"/rho =  "RT"/"M"`

For a gas at constant temperature `"P"/rho = "constant"`

∴ As P increase, rho also increase and vice versa. This implies that `v = sqrt((gamma P)/rho)` =  constant, i.e velocity is independent of pressure of the gas.

shaalaa.com
The Speed of a Travelling Wave
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Waves - Exercises [पृष्ठ ३८७]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
अध्याय 15 Waves
Exercises | Q 4.1 | पृष्ठ ३८७

संबंधित प्रश्न

A wire stretched between two rigid supports vibrates in its fundamental mode with a frequency of 45 Hz. The mass of the wire is 3.5 × 10–2 kg and its linear mass density is 4.0 × 10–2 kg m–1. What is (a) the speed of a transverse wave on the string, and (b) the tension in the string?


Earthquakes generate sound waves inside the earth. Unlike a gas, the earth can experience both transverse (S) and longitudinal (P) sound waves. Typically the speed of wave is about 4.0 km s–1, and that of wave is 8.0 km s–1. A seismograph records and waves from an earthquake. The first wave arrives 4 min before the first wave. Assuming the waves travel in straight line, at what distance does the earthquake occur?


A sine wave is travelling in a medium. The minimum distance between the two particles, always having same speed, is


Velocity of sound in air is 332 m s−1. Its velocity in vacuum will be


Two long strings A and B, each having linear mass density
\[1 \cdot 2 \times  {10}^{- 2}   kg   m^{- 1}\] , are stretched by different tensions 4⋅8 N and 7⋅5 N respectively and are kept parallel to each other with their left ends at x = 0. Wave pulses are produced on the strings at the left ends at t = 0 on string A and at t = 20 ms on string B. When and where will the pulse on B overtake that on A?


An organ pipe of length 0.4 m is open at both ends. The speed of sound in the air is 340 m/s. The fundamental frequency is ______ 


For the travelling harmonic wave

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of 0.5 m.


A transverse harmonic wave on a string is described by y(x, t) = 3.0 sin (36t + 0.018x + π/4) where x and y are in cm and t is in s. The positive direction of x is from left to right.

  1. The wave is travelling from right to left.
  2. The speed of the wave is 20 m/s.
  3. Frequency of the wave is 5.7 Hz.
  4. The least distance between two successive crests in the wave is 2.5 cm.

The amplitude of wave disturbance propagating in the positive x-direction given is by `1/(1 + x)^2` at time t = 0 and `1/(1 + (x - 2)^2)` at t = 1 s, where x and y are in 2 metres. The shape of wave does not change during the propagation. The velocity of the wave will be ______ m/s.


Two perfectly identical wires kept under tension are in unison. When the tension in the wire is increased by 1% then on sounding them together 3 beats are heard in 2 seconds. What is the frequency of each wire?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×