हिंदी

Earthquakes Generate Sound Waves Inside the Earth. Unlike a Gas, the Earth Can Experience Both Transverse (S) and Longitudinal (P) Sound Waves. Assuming the Waves Travel in Straight Line, at What Distance Does the Earthquake Occur? - Physics

Advertisements
Advertisements

प्रश्न

Earthquakes generate sound waves inside the earth. Unlike a gas, the earth can experience both transverse (S) and longitudinal (P) sound waves. Typically the speed of wave is about 4.0 km s–1, and that of wave is 8.0 km s–1. A seismograph records and waves from an earthquake. The first wave arrives 4 min before the first wave. Assuming the waves travel in straight line, at what distance does the earthquake occur?

उत्तर १

Let vSand vP be the velocities of S and P waves respectively.

Let be the distance between the epicentre and the seismograph.

We have:

L = vStS (i)

L = vPtP (ii)

Where,

tS and tP are the respective times taken by the S and P waves to reach the seismograph from the epicentre

It is given that:

vP = 8 km/s

vS = 4 km/s

From equations (i) and (ii), we have:

vtS = vtP

4tS = 8 tP

tS = 2 tP (iii)

It is also given that:

tS – tP = 4 min = 240 s

2tP – tP = 240

tP = 240

And tS = 2 × 240 = 480 s

From equation (ii), we get:

L = 8 × 240

= 1920 km

Hence, the earthquake occurs at a distance of 1920 km from the seismograph

shaalaa.com

उत्तर २

Here speed of S wave, υs = 4.0 km s-1 and speed of P wave, υp = 8.0 km s-1. Time gap between P and S waves reaching the resimograph, t = 40 min = 240 s.

Let distance of earthquake centre = sKm

`:. t = t_s - t_p = S/v_s - S/v_p = S/4.0 - S/8.0 = S/8.0 = 240 s`

or `s = 240 xx 8.0 = 1920 km`

shaalaa.com
The Speed of a Travelling Wave
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Waves - Exercises [पृष्ठ ३९०]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
अध्याय 15 Waves
Exercises | Q 26 | पृष्ठ ३९०

संबंधित प्रश्न

Show that for a wave travelling on a string 
\[\frac{y_{max}}{\nu_{max}} = \frac{\nu_{max}}{\alpha_{max}},\]

where the symbols have usual meanings. Can we use componendo and dividendo taught in algebra to write
\[\frac{y_{max} + \nu_{max}}{\nu_{max} - \nu_{max}} = \frac{\nu_{max} + \alpha_{max}}{\nu_{max} - \alpha_{max}}?\]


Two strings A and B, made of same material, are stretched by same tension. The radius of string A is double of the radius of B. A transverse wave travels on A with speed `v_A` and on B with speed `v_B`. The ratio `v_A/v_B` is ______.


Two sine waves travel in the same direction in a medium. The amplitude of each wave is A and the phase difference between the two waves is 120°. The resultant amplitude will be


A pulse travelling on a string is represented by the function \[y = \frac{a^2}{\left( x - \nu t \right)^2 + a^2},\] where a = 5 mm and ν = 20 cm-1. Sketch the shape of the string at t = 0, 1 s and 2 s. Take x = 0 in the middle of the string.


The equation of a wave travelling on a string is \[y = \left( 0 \cdot 10  \text{ mm } \right)  \sin\left[ \left( 31 \cdot 4  m^{- 1} \right)x + \left( 314  s^{- 1} \right)t \right]\]
(a) In which direction does the wave travel? (b) Find the wave speed, the wavelength and the frequency of the wave. (c) What is the maximum displacement and the maximum speed of a portion of the string?


A string of length 20 cm and linear mass density 0⋅40 g cm−1 is fixed at both ends and is kept under a tension of 16 N. A wave pulse is produced at t = 0 near an ends as shown in the figure, which travels towards the other end. (a) When will the string have the shape shown in the figure again? (b) Sketch the shape of the string at a time half of that found in part (a).


What is the interference of sound waves? 


For the travelling harmonic wave

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of 0.5 m.


A wave of frequency υ = 1000 Hz, propagates at a velocity v = 700 m/sec along x-axis. Phase difference at a given point x during a time interval M = 0.5 × 10-3 sec is ______.


An engine is approaching a cliff at a constant speed. When it is at a distance of 0.9 km from cliff it sounds a whistle. The echo of the sound is heard by the driver after 5 seconds. Velocity of sound in air is equal to 330 ms-1. The speed of the engine is ______ km/h.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×